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1 Foundation

1.1 Matrix algebra

Vectors dependency definition
A set of vectors D = {x1, x2, . . . , xr} is called linearly dependent if there is a set of scalar α1, α2, . . . , αr not all
zero such that

r∑
i=1

αixi = 0

Conversely, if
∑r
i=1 αixi = 0⇒ αi = 0, i = 0, 1, . . . , r, then D = {x1, x2, . . . , xr} are linearly independent.

Column space
Suppose A is an n*p matrix. Then each column of A is a vector in Rn. We can write A = (x1, . . . , xn), where
each xi ∈ Rn, i = 1, . . . , p. The space spanned by the columns of A is called the column space of A, written
C(A). That is S(A) = C(A), where S(A) is the space spanned by A.

Vector differentiation
Define the vector differentiation as follows

d

dβ
=

(
d

dβi

)
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where β is a n*1 vector. Then we have the following properties

d (β′a)

dβ
= a

d (a′β)

dβ
= a

d (β′Aβ)

dβ
= 2Aβ

Patterned matrices
If all inverses exist (

A11 A12

A21 A22

)−1

=

(
A−1

11 +B12B
−1
22 B21 −B12B

−1
22

−B−1
22 B21 B−1

22

)
=

(
C−1

11 −C−1
11 C12

−C21C
−1
11 A−1

22 + C21C
−1
11 C12

)
where B22 = A22−A21A

−1
11 A12, B12 = A−1

11 A12, B21 = A21A
−1
11 , C11 = A11−A12A

−1
22 A21, C12 = A12A

−1
22 , and

C21 = A−1
22 A12

Nonsingular
Suppose A is an n*n square matrix. Then A is said to be nonsingular if there exists a matrix A−1 such that

A−1A = AA−1 = I

Null space
The set of all x such that Ax = 0 is a vector space and is called the null space of A, written N(A).

Theorem 1.1. Suppose A is n*n. If r(A) = r then r(N(A)) = n− r

Trace
Suppose A is an n*n square matrix with ijth element aij . The trace of A is defined as

tr(A) =

n∑
i=1

aii

Property 1. tr(A+B) = tr(A) + tr(B)

Property 2. The trace is invariant under cyclic

Property 3. Suppose A; B; C are n*n square matrices. Then

tr(ABC) = tr(BCA) = tr(CAB)

Property 4. If A is an n*n matrix with eigenvaules λj , then tr(A) =
∑n
i=1 λj and det(A) =

∏n
i=1 λj

Property 5. Assume that A is symmetric, then tr (As) =
∑n
i=1 λ

s
i

Property 6. Assume that A is symmetric and nonsingular, then the eigenvalues of A−1 are λ−1
i (i = 1, . . . , n)

and hence tr
(
A−1

)
=
∑n
i=1 λ

−1
i

Rank

Property 1. rank(AB) ≤ minimum(rankA, rankB)

Property 2. If A is any matrix, and P and Q are any conformable nonsingular matrices, then rank(PAQ) =
rank(A)

Property 3. rank(A) = rank (A′) = rank(A) = rank (AA′)

Property 4. Let A be any m*n matrix such that r = rank(A) and s = nullity(A), [the dimension of N(A), the
null space or kernel of A, i.e., the dimension of {x : Ax = 0}]. Then r + s = n

Property 5. If C(A) is the column space of A, then C (A′A) = C (A′)

Property 6. If A is symmetric, then rank(A) is equal to the number of nonzero eigenvalues
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Eigenvalues and Eigenvectors of a matrix
Suppose A is an n*n square matrix.

Ax = λx, λ ∈ R1

then λ is called an eigenvalue of A and x is called an eigenvector. Note that eigenvectors are not unique.

Property 1. Assume that A is symmetric, then the eigenvalues of (In + cA) are 1 + cλi, (i = 1, . . . , n)

Property 2. Any n*n symmetric matrix A has a set of n orthonormal eigenvectors, and C(A) is the space
spanned by those eigenvectors corresponding to nonzero eigenvalues

Theorem 1.2. if x1 and x2 are eigenvectors with the same eigenvalue, then any nonzero linear combination of x1

and x2 is also an eigenvector with the same eigenvalue.

Theorem 1.3. λ is an eigenvalue of A if and only if A− λI is singular.

The eigenvalues of a matrix A are found by finding the solutions of the equation for λ

det(A− λI) = 0

Theorem 1.4. Suppose A is n*n with eigenvalues λ1, λ2, . . . , λn

• det(A) =
∏n
i=1 λi

• if A is singular, then det(A) = 0

• if A is nonsingular then A−1 exists and the eigenvalues are given by λ−1
1 , . . . , λ−1

n

• the eigenvalues of A′ are the same as those of A

• tr(A) =
∑n
i=1 λi and tr

(
A−1

)
=
∑n
i=1 λ

−1
i

• if A is symmetric then tr (Ar) =
∑n
i=1 λ

r
i for any integer r

Orthogonal matrix
A square matrix is orthogonal if PP ′ = P ′P = I

Theorem 1.5. An n*n matrix P is orthogonal if and only if the columns of P form an orthonormal basis for Rn,
that is the columns of P are all unit vectors and orthogonal to each other.

Positive-semi definite matrices
A symmetric matrix A is said to be positive-semidefinite (p.s.d.) if and only if x′Ax ≥ 0 ∀x

Property 1. The eigenvalues of a p.s.d. matrix are nonnegative

Property 2. If A is p.s.d., then tr(A) ≥ 0

Property 3. A is p.s.d. of rank r if and only if there exists an n*n matrix R of rank r such that A = RR′

Property 4. If A is an n*n p.s.d. matrix of rank r, then there exists an n*r matrix S of rank r such that
S′AS = Ir

Property 5. A is p.s.d. then x′Ax = 0 =⇒ Ax = 0

Positive-definite matrices
A symmetric matrix A is said to be positive- definite (p.d.) if x′Ax > 0 ∀x 6= 0. We note that a p.d. matrix is
also p.s.d.

Property 1. The eigenvalues of a p.d. matrix A are all positive; thus A is also nonsingular

Property 2. A is p.d. if and only if there exists a nonsingular R such that A = RR′

Property 3. If A is p.d. then so is A−1

Property 4. If A is p.d. then rank (CAC ′) = rank(C)

Property 5. If A is an n*n p.d. matrix and C is p*n of rank p, then CAC ′ is p.d.

Property 6. If X is n*p of rank p, then X ′X is p.d.

Property 7. A is p.d. if and only if all the leading minor determinants of A [including det(A) itself] are positive.

Property 8. The diagonal elements of a p.d. matrix are all positive
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Property 9. (Cholesky decomposition) If A is p.d., there exists a unique upper tri-angular matrix R with
positive diagonal elements such that A = R′R

Property 10. (Square root of a positive-definite matrix) If A is p.d., there exists a p.d. square root A1/2 such
that (A1/2)2 = A

Idempotent matrices
A matrix P is idempotent if P 2 = P . A symmetric idempotent matrix is called a projection matrix

Property 1. If P is symmetric, then P is idempotent and of rank r if and only if it has r eigenvalues equal to
unity and n-r eigenvalues equal to zero.

Property 2. If P is a projection matrix then tr(P ) = rank(P )

Property 3. If P is idempotent then so is I-P

Property 4. Projection matrices are positive-semidefinite

Property 5. If Pi(i = 1, 2) is a projection matrix and P1 − P2 is p.s.d. then P1P2 = P2P1 = P2 and P1 − P2 is a
projection matrix

Generalized inverse
Consider the linear transformation A : Rp −→ Rn. A generalized inverse of A is the linear transformation A−

such that
AA−y = y for all y ∈ C(A)

Equivalently, suppose A is an n*p matrix, then A−p×n is a generalized inverse of A if

AA−A = A

from the definition we can get (
A−A

) (
A−A

)
= A−

(
AA−A

)
= A−A

thus A−A is idempotent and hence a projection. The generalized inverse is not unique, but always exists.
Moore-Penrose generalized inverse
Suppose A is an n*p matrix. If the generalized inverse A−p×n satisfies four conditions

• AA−A = A

• A−AA− = A−

• (AA−)
′

= A A−

• (A−A)
′

= A−A

then A−p×n is called the Moore-Penrose generalized inverse. The Moore-Penrose generalized inverse is unique.

1.2 Matrix decomposition

Theorem 1.6. Spectral decomposition
Suppose A is an n*n symmetric matrix. Then there exists an orthogonal matrix P such that

A = P ∧ P ′

where Λ = diag (λ1, . . . , λn) is an n*n diagonal matrix of the eigenvalues of A with λ1 ≤ λ2 . . . ≤ λn and P is
the orthogonal matrix of orthonormal eigenvectors corresponding to the eigenvalues of A.

Theorem 1.7. Singular value decomposition
Suppose A is an n*p matrix of rank r, where r ≤ min(n, p). There exists orthogonal matrices Up×p and Vn×n such
that

V ′AU =

(
∆ 0
0 0

)
−→ A = V DU ′, where D =

(
∆ 0
0 0

)
where ∆ = diag (δ1, . . . , δr) is an r*r diggonal matrix with δ1 ≥ δ2 . . . ≥ δr > 0. The δi are called the singular
values of A.
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2 Linear regression

We are going to learn about the general linear model in the form of E(Y ) = Xβ and estimation of β using the
least squared method and associated distribution theory. The LSE method consists of minimizing

∑
i ε

2
i with

respect to β
Let θ = Xβ, we minimize ε′ε = ||Y − θ||2 subject to θ ∈ C(X) = Ω, where Ω is the column space of X.

2.1 Geometric approach

From the image we know that ||Y − θ̂||2 minimized when Ω ⊥ (y − θ̂), which is X
′
(Y − θ̂) = 0⇒ X ′θ̂ = X ′Y

thus θ̂ = (X ′)−1X ′Y . Here θ̂ is uniquely determined being the unique orthogonal projection of Y onto Ω, but β
is not necessarily unique.
We have

X ′θ̂ −X ′Y = 0

defined as normal equation

2.2 Algebraic approach

To derive β̂ algebraically. Write
ε′ε = (Y −Xβ)′(Y −Xβ)

= Y ′Y − 2β′X ′Y + β′X ′Xβ

By the vector differentiation we have
−2X ′Y + 2X ′Xβ = 0

X ′Xβ = X ′Y

To prove that we get the minimal β from this equation, we still need to take the second derivative, from which
we get 2X ′X ≥ 0.

2.2.1 When X is full rank

When the columns of X are linearly independent i.e. X is full rank, then there exists a unique vector

β̂ = (X ′X)
−1
X ′Y

Cause when X is full rank, X
′
X is positive-definite and therefore non-singular

2.2.2 When X is not full rank

When the columns of X are linearly dependent i.e. X is not full rank, then the solution is given by

β̂ =
(
X ′X

)−
X ′Y

where
(
X ′X

)−
is any generalized inverse of

(
X ′X

)
Proof:X ′Xβ = X ′Y . Consider a g-inverse

(
X ′X

)−
. We know that (X ′X) (X ′X)

−
(X ′X) = (X ′X). Then we

have (X ′X) (X ′X)
−

(X ′X) β̂ = (X ′X) (X ′X)
−
X ′Y = X ′Y , by comparing this equation withX ′Xβ = X ′Y .

We get that β̂ =
(
X ′X

)−
X ′Y is a solution.
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2.3 Projection matrix P

From the normal equation
θ̂ = Xβ̂ = X (X ′X)

−
X ′Y = PY

we define the projection matrix P as
P = X (X ′X)

−
X ′

P is unique and does not depend on the g-inverse used. When the inverse of X
′

exists

P = X
(
X ′X

)−1
X ′

2.3.1 When X is full rank

Suppose that X is n× p of rank p, so that P = X
(
X ′X

)−1
X ′ then

following hold.
(i) P and In − P are symmetric and idempotent.
(ii) rank (In − P ) = tr (In − P ) = n− p.
(iii) PX = X

Proof
(i) PP = X (X ′X)

−1
X ′X (X ′X)

−1
X ′ = X (X ′X)

−1
X ′

(ii) (I − P )(I − P ) = I − P − P + P · P = 1− P
(iii) PX = X (X ′X)

−1
X ′X = X

2.3.2 When X is not full rank

If X has rank r < p, then the above result still holds but with p replaced by r
Theorem: Suppose that X is n× p of rank r so that P = X

(
X ′X

)−
X ′ then following hold.

(i) P and In − P are symmetric and idempotent.
(ii) rank (In − P ) = tr (In − P ) = n− r
(iii) PX = X

Proof
X has rank r, let X1 be the n*r matrix with r linearly independent column then C[Xi] = C[X], then

P = X1 (X ′1X1)
−1
X1

cause the linear space is the same, then it’s easily got that P 2 = P , (I − P )2 = (I − P ).
Also ∃L such that X = X1L
thus PX = X1 (X ′1X1)

−1
X ′1 ·X1L = X1L = X

2.4 Residual Sums of Squares (RSS)

We denote the fitted values Xβ̂ by Ŷ =
(
Ŷi, . . . , Ŷn

)′
. The elements of the vector

Y − Ŷ = Y −Xβ̂
= (In − P )Y ,

then

RSS = [(I − P )Y ]′[(I − P )Y ]

= Y ′(I − P )Y

Another way of doing this is

ε′ε = (Y −Xβ̂)′(Y −Xβ̂)

= Y ′Y − 2β̂
′
X ′Y + β̂

′
X ′Xβ̂ − β̂

′
X ′Xβ̂ + β̂

′
X ′Xβ̂

= Y ′Y − β̂
′
X ′Xβ̂ + 2β̂

′ [
X ′Xβ̂ −X ′Y

]
= Y ′Y − β̂

′
X ′Xβ̂

thus
RSS = Y ′Y − β̂

′
X ′Xβ̂

6



2.5 PROPERTIES OF LEAST SQUARES ESTIMATES

β̂ is an unbiased estimate of β. That is
E(β̂) = β

The variance of the Least Square Estimator of β is given by
Var[β̂] = σ2

(
X ′X

)−1

Proof

Var(β̂) = (X ′X)
−1
X ′Var(Y )X

[
(X ′X)

−1
]′

= σ2 (X ′X)
−1

E(β̂) = (X ′X)
−1
X ′E[Y ] = (X ′X)

−1
X ′Xβ = β

Similar result holds for θ̂
E(θ̂) = PE(Y ) = P Xβ︸︷︷︸

θ

= Xβ = θ

Var(θ̂) = P Var(Y )P ′ = σ2PP ′ = σ2P

2.5.1 Best Linear Unbiased Estimator, BLUE

THEOREM 3.2: Let θ̂ be the least squares estimate of θ = Xβ where θ ∈ Ω = C(X) and X may not have
full rank. Then among the class of linear unbiased estimates of c′θ, c′θ̂ is the unique estimate with minimum
variance. We say that c′θ̂ is the best linear unbiased estimate BLUE of c′θ
Proof

θ̂ = PY (LSE)

E
(
c′θ̂
)

= c′E(θ̂) = c′θ ,∀θ ∈ Ω = c[x]⇒ unbiasness

Let d
′
Y be another estimator which is linear and unbiased then

E(d
′
Y ) = d

′
E(Y ) = d

′
Xβ = d

′
θ

unbiasness−−−−−−→ (d′ − c′) θ = 0 ⇒ (d− c) ⊥ Ω⇒ P (c− d) = 0⇒ Pc = Pd

then

Var (d′Y )−Var
(
c′θ̂
)

= d′Var(Y )d−Var
(
c′θ̂
)
⇐ c′θ̂ = c′PY = (Pc)′Y = (Pd)′Y

= d′
(
σ2I
)
d−Var [(Pd)′Y ] = σ2d′d− (Pd)′σ2(Pd)

= σ2d′d− σ2d′Pd

= σ2d′(I − P )d

= σ2d′(I − P )′(I − P )d

= σ2[(I − P )d]′[(1− P )d] ≥ 0

equality holds when
(I − P )d = 0⇒ d = Pd = Pc

If X is full rank, then a′β̂ is the BLUE of a′β for every vector a.

2.5.2 Unbiased estimation of σ2

THEOREM 3.3 E[Y ] = Xβ where X is an n× p matrix of rank r(r ≤ p) and Var[Y ] = σ2In
then

S2 =
(Y − θ̂)′(Y − θ̂)

n− r
=
RSS

n− r
is an unbiased estimate of σ2

Proof
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residual = (Y −Xβ̂) = (I − P )Y

RSS = [(I − P )Y ]′[(I − P )Y ] = Y ′(1− P )Y

E(RSS) = E {Y ′(I − P )Y } = tr
[
(I − P ) ∗ σ2I

]
+ (Xβ)′ (1− P )(xβ)︸ ︷︷ ︸

X−PX=0

⇒ E

(
RSS

n− r

)
= σ2 unbiased estimator

3 Linear regression with distribution assumption

Until now the only assumptions we have made about the εi are that E(ε) = 0 and V ar(ε) = σ2In. If we assume
that the εi are also normally distributed, i.e. ε ∼ Nn

(
0, σ2In

)
and hence Y ∼ Nn

(
Xβ, σ2In

)
. A number of

distributional results then follow.
THEOREM 3.5 if Y ∼ Nn

(
Xβ, σ2In

)
, where X is n*p of rank p then

• β̂ ∼ Np
(
β, σ2

(
X ′X

)−1
)

• (β̂ − β)′X ′X(β̂ − β)/σ2 ∼ χ2
p

• β̂ is independent of S2

• RSS/σ2 = (n− p)S2/σ2 ∼ χ2
n−p

Proof

• β̂ = (X ′X)
−1
X ′︸ ︷︷ ︸

c

Y and also Y ∼ Nn
(
Xβ, σ2In

)
.

then cY ∼MVN(cXβ, cΣc′) where rank(c) = rank(X) = rank(X ′)

cXβ = β, cΣC ′ = σ2cc′ = σ2 (X ′X)
−1
X ′X

[
(X ′X)

−1
]′

= σ2 (X ′X)
−1

• (β̂ − β)′X ′X(β̂ − β)/σ2 ∼ χ2
p since β̂ ∼ Np

(
β, σ2

(
X ′X

)−1
)

• β̂ = (X ′X)
−1
X ′︸ ︷︷ ︸

c

Y and (n − p)S2 = Y ′(I − P )Y = [(I − P )Y ]′[(I − P )Y ] then (X ′X)
−1
X ′[I − P ] =

(X ′X)
−1
X ′
[
I −X(X ′X)−1X ′

]
= (X ′X)

−1
X ′ − (X ′X)

−1
X ′X(X ′X)−1X ′ = 0

• RSS
σ2 = Y ′(1−P )Y

σ2 since (1−P ) is idempotent with rank(1−P ) = n− r based on THEOREM 2.7 we have
RSS/σ2 = (n− p)S2/σ2 ∼ χ2

n−p

3.1 MLE

Assuming full rank of X, the likelihood is

L
(
β, σ2

)
=
(
2πσ2

)−n/2
exp

[
− 1

2σ2
‖Y −Xβ‖2

]
then the log-likelihood is

`
(
β, σ2

)
= −n

2
log
(
2πσ2

)
− 1

2σ2
(Y −Xβ)′(Y −Xβ) = −n

2
log (2πµ)− 1

2µ
(Y −Xβ)′(Y −Xβ)

where σ2 = µ
then

∂l

∂β
= − 1

2µ
(−2X ′Y + 2X ′Xβ)

set
= 0⇒ β̂mle = (X ′X)

−1
X ′Y ⇒ lse = mle

and

∂l

∂µ
=
−n
2µ

+
1

2µ2
(Y −Xβ)′(Y −Xβ)

set
= 0⇒ µ̂ =

(Y −Xβ̂)′(Y −Xβ̂)

n
=

RSS
n
6= µ̂lse =

(Y −Xβ̂)′(Y −Xβ̂)

n− p︸ ︷︷ ︸
unbiased estimator for σ2
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then for the distribution

∂2l

∂β∂β′
= − 1

σ2
(X ′X) ⇒ −E

[
− 1

σ2
(X ′X)

]
=
X ′X

σ2

∂2l

∂β∂µ
=

1

2µ2
(−2X ′Y + 2X ′Xβ) ,sine β̂ = (X ′X)

−1
X ′Y ,

∂2l

∂β∂µ
=

∂2l

∂µ∂β
= 0

∂2l

∂µ2
=

n

2µ2
− 1

µ3
(Y−Xβ)′(Y−Xβ)⇒ −E

[
− ∂

2l

∂µ2

]
=
−n
2µ2

+
1

µ3
E [(Y −Xβ)′(Y −Xβ)]︸ ︷︷ ︸

(Y−Xβ)′(σ2I)−1(Y−Xβ)∼χ2
n

=
−n
2µ2

+
nσ2

µ3
=
−n
2µ2

+
nµ

µ3
=

n

2µ2

then

I =

[ 1
µX
′X 0

0 n
2µ2

]
⇒ I− =

[
µ (X ′X)

−1
0

0 2µ2

n

]
then we have (

β̂mle
σ̂2

mle

)
asymptotically normal∼

((
β
σ2

)
,

(
(X ′X)

−1
σ2 0

0 2σ4

n

))

3.1.1 review on MLE properties

Score:The partial derivative with respect to θ of the natural logarithm of the likelihood function is called the
score

Z = l′ =
∂

∂θ
log f(X; θ)

E(Z) = 0 and Z d−→ N (0, I(θ0))

under θ0

Fisher information: The variance of the score is defined to be the Fisher information

I(θ) = E

[(
∂

∂θ
log f(X; θ)

)2

| θ

]
= −E

[
∂2

∂θ2
log f(X; θ) | θ

]

Property 1. If θ̂ is the MLE estimate of θ0, then it has the following property:

√
n(θ̂ − θ0)

d−→ N(0,
1

I(θ0)
)

3.1.2 Orthogonal columns in the regression matrix

Suppose that in the full-rank model E[Y ] = Xβ the matrix X has a column representation where the columns
are all mutually orthogonal

X =
(
x(0),x(1), · · · ,x(p−1)

)
then we will have

β̂ = (X ′X)
−1
X ′Y =

[x(0)′x(0)]−1 . . . 0
...

. . .
...

0 . . . [x(p−1)′x(p−1)]−1


 x(0)′Y

...
x(p−1)′Y

 =
[
x(j)′Y
x(j)′x(j)

]

this implies that under the orthogonal condition, if we only want to estimate certain βj then we don’t need to
fit the whole model instead we can only fit Y on x(j)

3.2 Estimation with linear constrain

The conclusion from this part is applicable under both MLE and LSE cause we only estimate β̂
Let Y = Xβ + ε where X is n*p of full rank p. Suppose that we wish to find the minimum of ε′ε subject to the
linear restrictions Aβ = c where A is a known q*p matrix of rank q and c is a known q*1 vector then with
Lagrange multiplier we can get

β̂H = β̂ + (X ′X)
−1
A′
[
A (X ′X)

−1
A′
]−1

(c−Aβ̂)

9



where β̂ is the estimation without constrain, i.e. β̂ = (X ′X)
−1
X ′Y .

Proof let λ =

 λ1

...
λq

 then we define Lagrange multiplier as

Lagrange multiplier = (β′A′ − C ′)λ

let
S = min

β
(Y −Xβ)′(Y −Xβ) + (β′A′ − c′)λ

then

∂S

∂β
= −2X ′Y + 2X ′Xβ +A′λ

set
= 0⇒ (X ′X)β = X ′Y − 1

2
A′λ⇒ β̂H = (X ′X)

−1
X ′Y − 1

2
(X ′X)

−1
A′λ̂H

suppose β̂H and λ̂H are the solution under constrain H : Aβ = c then we have

c = Aβ̂H = A (X ′X)
−1
X ′Y︸ ︷︷ ︸

β̂ under no constrain

−1

2
A (X ′X)

−1
A′λ̂H = Aβ̂ − 1

2
A(XX)−1A′λ̂H

since rank(A) = q, A (X ′X)
−1
A′ is non-singular. Thus

−1

2
λ̂H =

[
A (X ′X)

−1
A′
]−1

(c−Aβ̂)

therefore
β̂H = β̂ + (X ′X)

−1
A′
[
A (X ′X)

−1
A′
]−1

(c−Aβ̂)

we also need to prove the β̂H minimize ε′ε under constrain

(Y −Xβ)′(Y −Xβ) = (Y −Xβ̂ +Xβ̂ −Xβ)′(Y −Xβ̂ +Xβ̂ −Xβ)

= (Y −Xβ̂)′(Y −Xβ̂) + (β̂ − β)′X ′X(β̂ − β)

where

(β̂ − β)′X ′X(β̂ − β) =
(
β̂ − β̂H + β̂H − β

)′
X ′X

(
β̂ − β̂H + β̂H − β

)
=
(
β̂ − β̂H

)′
X ′X

(
β̂ − β̂H

)
+
(
β̂H − β

)′
X ′X

(
β̂H − β

)
+ 2

(
β̂ − β̂H

)′
X ′X

(
β̂H − β

)
=
(
β̂ − β̂H

)′
X ′X

(
β̂ − β̂H

)
+
(
β̂H − β

)′
X ′X

(
β̂H − β

)
since(

β̂ − β̂H
)′
X ′X

(
β̂H − β

)
=

[
1

2
(X ′X)

−1
A′λ̂H

]′
X ′X

(
β̂′H − β

)
=

1

2
λ̂′HA

(
β̂H − β

)
=

1

2
λ̂H(c− c) = 0

we get

(Y −Xβ)′(Y −Xβ) = (Y −Xβ̂)′(Y −Xβ̂) +
[
X
(
β̂ − β̂H

)]′ [
X
(
β̂ − β̂H

)]
+
[
X
(
β̂H − β

)]′ [
X
(
β̂H − β

)]
all three terms are positive, thus minimum achieved when[

X
(
β̂H − β

)]
= 0

i.e.
β = β̂H

then we get ∥∥∥Y − ŶH

∥∥∥2

= ‖Y − Ŷ‖2 +
∥∥∥Ŷ − ŶH

∥∥∥2
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3.3 Identifiability

The conclusion from this part is applicable under both MLE and LSE cause we only estimate β̂
A model is identifiable if it is theoretically possible to learn the true values of this model’s underlying parameters
after obtaining a sample. Mathematically, this is equivalent to saying that different values of the parameters
must generate different probability distributions of the observable variables.
Let

P = {P θ : θ ∈ Θ}

then
P θ1 = P θ2 =⇒ θ1 = θ2

for ∀θ1, θ2 ∈ Θ
We have E(Y ) = Xβ. The design matrix X is n*p and is not full rank. So β̂ is not unique. But θ = Xβ and θ̂
is unique. Also RSS = Y ′(I − P )Y is unique. We can always have solution to β based on g inverse. The other
way is that we impose constraints H so that models are identifiable.

Hβ = 0

let

G =

[
X
H

]
then we have

β̂ = (G′G)
−1
X ′Y

Proof

G =

(
Xn×p
H(p−r)×p

)
⇒ G′ = (X ′, H ′)⇒ G′G = X ′X +H ′H

then G−1 exists cause G is full rank. We know

(X ′X) β̂ = X ′Y, Hβ̂ = 0

thus
(G′G−H ′H) β̂ = X ′Y ⇒ G′Gβ̂ = X ′Y ⇒ β̂ = (G′G)

−1
X ′Y

We have that β̂ is unbiased.
Proof

E(β̂) = E
[
(G′G)

−1
X ′Y

]
= (G′G)

−1
X ′E(Y ) = (G′G)

−1
X ′Xβ

= (G′G)
−1

(G′G−H ′H)β

= β − (G′G)
−1
H ′ Hβ︸︷︷︸

0

= β

3.4 Estimability

Since β̂ is not unique, β is not estimable. We consider function of elements of β, i.e. a′β
Definition The parametric function a′β is said to be estimable if it has a linear unbiased estimate, say b′Y
This implies that

E (b′Y ) = b′E(Y ) = b′Xβ , ∀β
b′Xβ = a′β ,∀β
a′ = b′X or a = X ′b

thus THEOREM 1
a′β is estimatable ⇔ a = X ′b

⇔ a ∈ C [X ′] or

THEOREM 2 if a′β is estimable and β̂ is any solution of the normal equation then (1) a′β̂ is unique and (2)
a′β̂ is the BLUE of a′β

THEOREM 3 a′β is estimable if and only if a′ (X ′X)
−
X ′X = a′

11



Proof
⇒ a′β is estimable then

∃c s.t. a′ = c′X

⇒ a′ (X ′X)
−
X ′X = c′X (X ′X)

−
X ′X = c′PX = c′X = a′

⇒ suppose a′ (X ′X)
−
X ′X = a′ then

E
[
a′β̂
]

= E
[
a′ (X ′X)

−
X ′Y

]
= a′ (X ′X)

−
X ′Xβ = a′β

4 Generalized least square

Having developed a least squares theory for the full-rank model Y = Xβ+ε, where E(ε) = 0 and Var(ε) = σ2I,
we now consider what modifications are necessary if we allow the εi to be correlated. In particular, we assume
the Var[ε] = σ2V , where V is a known n*n positive-definite matrix.

Theorem 4.1. Under the above setting, we have

β? =
(
X ′V −1X

)−1
X ′V −1Y

Var [β?] = σ2
(
X ′V −1X

)−1

RSS == (Y −Xβ?)′ V −1 (Y −Xβ?)

Proof Y = Xβ + ε, where ε ∼ N(0, σ2V ). Since V is a positive-definite

⇒ ∃Kn∗n s.t. V = KK ′,K−1 exist

then write
k−1Y︸ ︷︷ ︸
Z

= K−1X︸ ︷︷ ︸
B

β +K−1ε︸ ︷︷ ︸
η

⇒ z = Bβ + η

, where E(η) = 0,Var(η) = σ2I since

E(η) = E
(
K−1ε

)
= 0 ; Var(η) = Var

(
K−1ε

)
= K−1 Var(ε)

(
K−1

)′
= K−1σ2KK ′ (K ′)

−1
= σ2I

then
β∗ = (B′B)

−1
B′Z =

(
X ′K−1′K−1X

)−1
X ′K−1′K−1Y =

(
X ′V −1X

)−1
X ′V −1Y

then
E (β∗) =

(
X ′V −1X

)−1
X ′V −1Xβ = β unbiased

Var (β∗) =
(
X ′V −1X

)−1
X ′V −1 Var(Y )

[(
X ′V −1X

)−1
X ′V −1

]′
=
(
X ′V −1X

)−1
X ′V −1σ2V

[(
X ′V −1X

)−1
X ′V −1

]′
=
(
X ′V −1X

)−1
σ2

E [β?] =
(
X ′V −1X

)−1
X ′V −1Xβ = β

E
[
(Y −Xβ?)′ V −1 (Y −Xβ?)

]
= (n− p)σ2

RSS = (Z −Bβ∗)′ (Z −Bβ∗) =
(
K−1Y −K−1Xβ∗

)′
(K−1Y −K−1Xβ∗)

= (Y −Xβ∗)′
(
K−1

)′
K−1 (Y −Xβ∗)

= (Y −Xβ∗)′ V −1 (Y −Xβ∗)

Alternative method for deriving the β is minimizing η′η with respect to β

η′η = ε′V −1ε

= (Y −Xβ)′V −1(Y −Xβ)

= Y ′V −1Y − 2β′X ′V −1Y + β′X ′V −1Xβ

∂η′η

∂β
= −2X ′V −1Y + 2X ′V −1Xβ

set
= 0
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we also get
β? =

(
X ′V −1X

)−1
X ′V −1Y

A special case is that when
V = diag

(
w−1

1 , w−1
2 , · · · , w−1

n

)
(wi > 0)

we have

β? =

∑
i wiYixi∑
i wix

2
i(

X ′V −1X
)−1

=
(
x′V −1x

)−1
=
(∑

wix
2
i

)−1

Theorem 4.2. a′β∗ is the best linear unbiased estimate (BLUE) of a′β under the generalized linear model.

Proof
a′β∗ = a′

(
X ′V −1X

)−1
X ′V −1︸ ︷︷ ︸

b′

Y = b′Y

is lienar in Y and also unbiased. Let b′−1Y be another unbiased linear estimator of a′β

a′β∗ = α′ (B′B)
−1
B′Z

b′1Y = b′1KK
−1Y = (K ′b1)

′
Z

by previous theorem BLUE:
Var (a′β∗) 6 Var

(
(K ′b1)

′
Z
)

= Var (b′1Y )

equality holds if and only if

(K ′b1)
′

= a′ (B′B)
−1
B′ ⇒ b′1K = a′ (B′B)

−1
B′ ⇒ b′1 = a′ (B′B)

1
B′K−1 = a′

(
X ′V −1X

)−1
X ′V −1 = b′

5 Hypothesis Testing

We are interested in the form of H0 = Aβ = 0

5.1 Likelihood ratio test

G : Yi = β0 + β1xi1 + · · ·+ βp−1xi,p−1 + εi, full model
H : Yi = β0 + β1xi1 + · · ·+ βr−1xi,r−1 + εi, reduced model

Hypothesis of interest is H0 : βr = βr+1 = . . . . . . = βp−1 = 0

Given the linear model G : Y = Xβ + ε, where X is n*p of rank p and ε ∼ Nn
(
0, σ2In

)
, we wish to test the

hypothesis H0 : Aβ = 0, where A is q*p of rank q. the likelihood function for G is

L
(
β, σ2

)
=
(
2πσ2

)−n/2
exp

[
− 1

2σ2
‖Y −Xβ‖2

]
under the MLE

σ̂2 = ‖Y −Xβ̂‖2/n

then the likelihood becomes
L
(
β̂, σ̂2

)
=
(
2πσ̂2

)−n/2
e−n/2

let β̂H and σ̂2
H be the estimator of Y = Xβ + ε when Aβ = 0, then under the hypothesis

L
(
β̂H , σ̂

2
H

)
=
(
2πσ̂2

H

)−n/2
e−n/2

then the likelihood ratio test of H is given by

Λ =
L
(
β̂H , σ̂

2
H

)
L
(
β̂, σ̂2

) =

(
σ̂2

σ̂2
H

)n/2

We have learned that −2logΛ has a chi-squared distribution.
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5.2 F test

In summary

F =
n− p
q

(
Λ−2/n − 1

)
has an Fq,n−p distribution when H0 is true. And we also have

•
RSSH −RSS =

∥∥∥Ŷ − Ŷ H

∥∥∥2

= (Aβ̂ − c)′
[
A
(
X ′X

)−1
A′
]−1

(Aβ̂ − c)

•
E [RSSH −RSS] = σ2q + (Aβ − c)′

[
A
(
X ′X

)−1
A′
]−1

(Aβ − c)

= σ2q + (RSSH −RSS)Y=E[Y ]

•

F =

improvement︷ ︸︸ ︷(
RSS̃H −RSS

)
/q

RSS/(n− p)
=

(Aβ̂ − c)′
[
A (X ′X)

−1
A′
]−1

(Aβ̂ − c)

qS2

is distributed as Fq,n−p (the F-distribution with q and n-p degrees of freedom, respectively)

• when c = 0, F can be expressed in the form

F =
n− p
q

Y ′ (P − PH)Y

Y ′ (In − P )Y

where PH is symmetric and idempotent and PHP = PPH = PH

Proof y = Xβ + ε, where rank(X) = p, rank(A) = q and H0 : Aβ = c. Under the constrain, H0 : Aβ = c we
know

β̂H = β̂ + (X ′X)
−1
A′
[
A (X ′X)

−1
A′
]−1

(c−Aβ̂) (1)

also since we have
∥∥∥Y − ŶH

∥∥∥2

= ‖Y − Ŷ‖2 +
∥∥∥Ŷ − ŶH

∥∥∥2

we get

RSSH = RSS +
(
β̂ − β̂H

)′
X ′X

(
β̂ − β̂H

)
from 1 we know that

β̂H − β̂ = (X ′X)
−1
A′
[
A (X ′X)

−1
A′
]−1

(c−Aβ̂)

and

RSSH −RSS =
(
β̂ − β̂H

)′
X ′X

(
β̂ − β̂H

)
= (c−Aβ̂)′

[
A(XX)−1A′

]−1
A(XX)−1(XX)(XX)−1A′

[
A (X ′X)

−1
A′
]−1

(c−Aβ̂)

= (c−Aβ̂)′
[
A(X ′X)−1A′

]−1
(c−Aβ̂)

= (Aβ̂ − c)′
[
A(XX)−1A′

]−1
(Aβ̂ − c)

the first equation is proved
We also know that

Aβ̂ ∼ N(Aβ, A (X ′X)
−1
A′︸ ︷︷ ︸

B

σ2)

let Z = Âβ − c then Var(Z) = Bσ2 we have

E (RSSH −RSS) = E
[
(Aβ̂ − c)′

[
A(XX)−1A′

]−1
(Aβ̂ − c)

]
= E

[
Z ′B−1Z

]
= tr(σ2B−1B) + (Aβ − c)′B−1(Aβ − c)
= tr(σ2Iq×q) + (Aβ − c)′B−1(Aβ − c)

= σ2q + (Aβ − c)′
[
A(X ′X−1)A′

]−1
(Aβ − c)
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the second equation is proved
H0 : Aβ = c, under H0, Aβ̂ ∼ N

(
c = Aβ, σ2A (X ′X)

−1
A′
)

thus

(Aβ̂ − c)′
[
σ2A (X ′X)

−1
A′
]−1

(Aβ̂ − c) =
RSSH −RSS

σ2
∼ χ2

q

we also have
RSS
σ2

∼ χ2
n−p

and previously we learned that RSS is independent of β̂, thus RSSH − RSS ⊥ RSS. Therefore,

RSS H − RSS /(σ2/q) ∼ χ2
q

RSS /(σ2/(n− p)) ∼ χ2
n−p

> independence =⇒∼ Fq, n−p

the third equation is proved
when c = 0,

ŶH = Xβ̂H = X

[
β̂ + (X ′X)

−1
A′
[
A (X ′X)

−1
A′
]−1

(c−Aβ̂)

]
= PY −X (X ′X)

−1
A′
[
A (X ′X)

−1
A′
]−1

A (X ′X)
−1
X ′Y︸ ︷︷ ︸

P1

= (P − P1︸ ︷︷ ︸
PH

)Y

here PH is symmetric since we know P1 is symmetric and idempotent. We can also show P1P = PP1 = P1.
Further, PH is idempotent

P 2
1 = (P − P1) (P − P1) = P 2 − P1P − PP1 + P 2

1

= P − 2P1 + P1 = P − P1 = PH

also PPH = PH and

RSSH =
∥∥∥Y −Xβ̂H∥∥∥2

= ‖Y − PHY ‖2 = Y ′ (I − PH)Y

RSS = Y ′(I − P )Y

6 Some comments about ANOVA

Consider one-way ANOVA
simple mean

trt 1 Y11, Y12, . . . , Y1,J1 ȳ1

trt 2 Y21, Y22, . . . , Y2,J2 ȳ2

...
...

...
trt I YI1, YI2, . . . , YI,JI yI

the model is Yij = µi + εij , (i = 1, 2, . . . , I, j = 1, . . . , Ji), β =


µ1

µ2

...
µI

 , assume εij ∼ N
(
0, σ2

)
, then

we can write as

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y11

...
y1,J1

y21

...
y2,J2

...
yI1
...

yI,JI

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=



1 0 0 · · · 0
...

1 0 0 · · · 0
0 1 0 · · · 0

...
0 1 0 · · · 0
0 0 0 · · · 1

...
0 0 0 · · · 1




µ1

...
µ2

µI

,⇒ X =


1J1 0J1 · · · 0J1
0J2 1J2 · · · 0J2

...
0JI 0JI · · · 1JI

. To test hypoth-
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esis, H0 : µ1 = µ2 = · · · = µI (testable since X is full rank) Aβ = 0 ⇔



1 −1 0 · · · 0
0 1 −1 · · · 0
0 0 1 −1 · · ·
0

...

0 0 0 1 −1


β = 0.

Then proceed with usual F-test F = (RSSH−RSS)/(I−1)
RSS/(n−I) . ALTERNATIVELY, we can write S =

∑
i

∑
j (yij − µi)2,

where S is the error sum of squared ε2ij ,
∂S
∂µi

= 0 ⇒
∑
j 2 (yij − µi) = 0 ⇒ µi =

∑
j yij

Ji
= yi, RSS =∑

i

∑
j (yij − µ̂i)2

=
∑
i

∑
j (yij − ȳi)2 and under H0 S =

∑
i

∑
j (yij − µ)

2 − error sum of squared , ∂S
∂µ =

0 ⇒
∑
i

∑
j (yij − µ) = 0 ⇒ µ̂ =

∑
i

∑
j(yij)∑
i Ji

= Ȳ ← overall mean . Thus RSSH =
∑
i

∑
j (yij − µ̂)

2
=∑

i

∑
j

(
yij − Ȳ

)2
. Then RSSH − RSS =

∑
i

∑
j (ŷij − ŷH)

2
=
∑
i

∑
j

(
ȳi − Ȳ

)2
=
∑
i Ji
(
ȳi − Ȳ

)2
. There-

fore, using the F-test F =
∑

i Ji(ȳi−Ȳ )/(I−1)∑
i

∑
j(yi−ȳi)2/(n−I)

, p = I, q = I − 1
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