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1 Foundation

1.1 Matrix algebra

Vectors dependency definition
A set of vectors D = {x1, s, ..., z,} is called linearly dependent if there is a set of scalar a1, as, ..., a, not all

zero such that
T
Z o;T; = 0
i=1

Conversely, if Y., cua; =0=a; =0,i=0,1,...,r, then D = {1, 2, ..., 2.} are linearly independent.

Column space

Suppose A is an n*p matrix. Then each column of A is a vector in R™. We can write A = (z1,...,xz,), Where
each z; € R", i = 1,...,p. The space spanned by the columns of A is called the column space of A, written
C(A). Thatis S(A) = C(A), where S(A) is the space spanned by A.

d _(d
d5_<dﬂ7:>

Vector differentiation
Define the vector differentiation as follows




where (3 is a n*1 vector. Then we have the following properties

d(f'a)
ap
d(a'B)
g

d(B'AB)

g
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Patterned matrices
If all inverses exist

Ag1 Az —By,' B B3y
_ < O ~Ci'Crz )
T\ 0l AL+ 000 Crs
Where BQQ = A22 — A21A;11A12, Blg = A;llAlg, B21 = AglAfll, 011 = All — A12A;21A21, Clg = A12A;21, and
Co = A2_21A12
Nonsingular
Suppose A is an n*n square matrix. Then A is said to be nonsingular if there exists a matrix A~! such that

—1 _ _ _
<A11 A12> _ A7 4 Bia By Boy —3123221>

ATTA=AAT =T

Null space
The set of all x such that Az = 0 is a vector space and is called the null space of A, written N(A).

Theorem 1.1. Suppose A is n*n. If r(A) = r thenr(N(A)) =n—r

Trace
Suppose A is an n*n square matrix with ijth element a;;. The trace of A is defined as

tI‘(A) = zn: Qs
=1

Property 1. tr(A + B) = tr(A4) + tr(B)

Property 2. The trace is invariant under cyclic

Property 3. Suppose A; B; C are n*n square matrices. Then

tr(ABC) = tr(BCA) = tr(CAB)

Property 4. If A is an n*n matrix with eigenvaules \;, then tr(A) = Y"1 ; \; and det(A) =[]\, \;

Property 5. Assume that A is symmetric, then tr (A%) = > A

1=1""

Property 6. Assume that A is symmetric and nonsingular, then the eigenvalues of A~ are /\Z._1 (i=1,...,n)
and hence tr (A71) =37 A7*

Rank
Property 1. rank(AB) < minimum(rank A, rank B)

Property 2. If A is any matrix, and P and () are any conformable nonsingular matrices, then rank(PAQ) =
rank(A)

Property 3. rank(A) = rank (4’) = rank(A4) = rank (AA”")

Property 4. Let A be any m*n matrix such that » = rank(A) and s = nullity(A), [the dimension of N(A), the
null space or kernel of A, i.e., the dimension of {« : Az = 0}]. Thenr +s=n

Property 5. If C'(A) is the column space of A, then C' (4’A) = C (A")

Property 6. If A is symmetric, then rank(A) is equal to the number of nonzero eigenvalues



Eigenvalues and Eigenvectors of a matrix
Suppose A is an n*n square matrix.
Az =z, \ € R

then A is called an eigenvalue of A and « is called an eigenvector. Note that eigenvectors are not unique.
Property 1. Assume that A is symmetric, then the eigenvalues of (I,, + cA) are 1 + ¢, (i =1,...,n)

Property 2. Any n*n symmetric matrix A has a set of n orthonormal eigenvectors, and C(A) is the space
spanned by those eigenvectors corresponding to nonzero eigenvalues

Theorem 1.2. if x1 and x5 are eigenvectors with the same eigenvalue, then any nonzero linear combination of x,
and x5 is also an eigenvector with the same eigenvalue.

Theorem 1.3. ) is an eigenvalue of A if and only if A — \I is singular.
The eigenvalues of a matrix A are found by finding the solutions of the equation for A
det(A—XI)=0
Theorem 1.4. Suppose A is n*n with eigenvalues A1, Aa, ..., An
o det(A) =TT, N\
* if Ais singular, then det(A) =0
* if A is nonsingular then A~" exists and the eigenvalues are given by \|'*,..., \;*
* the eigenvalues of A’ are the same as those of A
s tr(A)=Y"  Nandtr (A7) =30 A
* if Ais symmetric then tr (A") = > | A} for any integer r

Orthogonal matrix
A square matrix is orthogonal if PP’ = P'P =1

Theorem 1.5. An n*n matrix P is orthogonal if and only if the columns of P form an orthonormal basis for R",
that is the columns of P are all unit vectors and orthogonal to each other.

Positive-semi definite matrices
A symmetric matrix A is said to be positive-semidefinite (p.s.d.) if and only if 2/ Az >0 Vz

Property 1. The eigenvalues of a p.s.d. matrix are nonnegative
Property 2. If Ais p.s.d., then tr(A) >0
Property 3. Ais p.s.d. of rank r if and only if there exists an n*n matrix R of rank r such that A = RR’

Property 4. If A is an n*n p.s.d. matrix of rank r, then there exists an n*r matrix S of rank r such that
S'AS =1,

Property 5. Ais p.s.d. then 2’ Ax = 0= Az =0

Positive-definite matrices
A symmetric matrix A is said to be positive- definite (p.d.) if 2’Az > 0 Vz # 0. We note that a p.d. matrix is
also p.s.d.

Property 1. The eigenvalues of a p.d. matrix A are all positive; thus A is also nonsingular

Property 2. A is p.d. if and only if there exists a nonsingular R such that A = RR’

Property 3. If A is p.d. then sois A~!

Property 4. If A is p.d. then rank (CAC’) = rank(C)

Property 5. If A is an n*n p.d. matrix and C is p*n of rank p, then CAC" is p.d.

Property 6. If X is n*p of rank p, then X’X is p.d.

Property 7. Ais p.d. if and only if all the leading minor determinants of A [including det(A) itself] are positive.

Property 8. The diagonal elements of a p.d. matrix are all positive



Property 9. (Cholesky decomposition) If A is p.d., there exists a unique upper tri-angular matrix R with
positive diagonal elements such that A = R'R

Property 10. (Square root of a positive-definite matrix) If A is p.d., there exists a p.d. square root A'/? such
that (A1/2)2 = A

Idempotent matrices
A matrix P is idempotent if P2 = P. A symmetric idempotent matrix is called a projection matrix

Property 1. If P is symmetric, then P is idempotent and of rank r if and only if it has r eigenvalues equal to
unity and n-r eigenvalues equal to zero.

Property 2. If P is a projection matrix then tr(P) = rank(P)
Property 3. If P is idempotent then so is I-P
Property 4. Projection matrices are positive-semidefinite

Property 5. If P;(i = 1,2) is a projection matrix and P; — P, is p.s.d. then P\P, = P,P, = Pand P, — Py is a
projection matrix

Generalized inverse
Consider the linear transformation A : RP — R"™. A generalized inverse of A is the linear transformation A~
such that

AA Ty =yforally € C(A)

Equivalently, suppose A is an n*p matrix, then A, is a generalized inverse of A if
AATA=A
from the definition we can get
(AmA)(A"A)=A" (A4 4) =474

thus A~ A is idempotent and hence a projection. The generalized inverse is not unique, but always exists.
Moore-Penrose generalized inverse
Suppose A is an n*p matrix. If the generalized inverse A, ,, satisfies four conditions

s AA"A=A
s ATAA- = A
s (AA°) =A4A~

s (ATA) =A-A

then A, is called the Moore-Penrose generalized inverse. The Moore-Penrose generalized inverse is unique.

1.2 Matrix decomposition

Theorem 1.6. Spectral decomposition
Suppose A is an n*n symmetric matrix. Then there exists an orthogonal matrix P such that

A=PAP

where A = diag (A1, ..., A,) is an n*n diagonal matrix of the eigenvalues of A with \y < Xo... <\, and P is
the orthogonal matrix of orthonormal eigenvectors corresponding to the eigenvalues of A.

Theorem 1.7. Singular value decomposition

Suppose A is an n*p matrix of rank r, where r < min(n, p). There exists orthogonal matrices Uy, and V,,x,, such
that

A0

0 0

VAU( 0 0

)HAVDU’, WhereD<A O)

where A = diag (61, ...,0,) is an r*r diggonal matrix with §; > d2... > 6, > 0. The ¢, are called the singular
values of A.



2 Linear regression

We are going to learn about the general linear model in the form of F(Y) = X3 and estimation of 8 using the
least squared method and associated distribution theory. The LSE method consists of minimizing >, €7 with
respect to 8

Let § = X3, we minimize €’e = ||V — || subject to 6 € C(X) = (2, where () is the column space of X.

2.1 Geometric approach

From the image we know that ||Y — 0||> minimized when Q L (y — ), whichis X (Y —0) =0 = X'0 = X'Y
thus § = (X’)~1X'Y. Here @ is uniquely determined being the unique orthogonal projection of Y onto €2, but /3
is not necessarily unique.
We have

X90-XY=0

defined as normal equation

2.2 Algebraic approach

To derive /3 algebraically. Write
de=(Y - XB) (Y — XB)
=YY -28X'Y+8X'X3

By the vector differentiation we have
—2X'Y +2X'XB8=0

X'XB=X'Y

To prove that we get the minimal 8 from this equation, we still need to take the second derivative, from which
we get 2X’'X > 0.

2.2.1 When X is full rank

When the columns of X are linearly independent i.e. X is full rank, then there exists a unique vector
B=(X'X)"'" XY

Cause when X is full rank, X X is positive-definite and therefore non-singular

2.2.2 When X is not full rank

When the columns of X are linearly dependent i.e. X is not full rank, then the solution is given by
f=(X'X)" XY

where (X'X) " is any generalized inverse of (X'X)

Proof: X' X3 = X'Y . Consider a g-inverse (X'X) . We know that (X'X) (X'X)™ (X'X) = (X'X). Then we
have (X'X) (X'X)” (X'X) 3 = (X'X)(X'X)” X'Y = X'Y, by comparing this equation with X' X3 = X'Y.
We get that = (X'X)~ X'Y is a solution.



2.3 Projection matrix P
From the normal equation
0=XBp=X(X'X) X'Y=PY
we define the projection matrix P as
P=X(X'X)" X
P is unique and does not depend on the g-inverse used. When the inverse of X exists
P=X(X'X)"'Xx
2.3.1 When X is full rank

Suppose that X is n x p of rank p, so that P = X (X’X)_1 X' then
following hold.
(i) P and I,, — P are symmetric and idempotent.
(i) rank (I, — P)=tr(I, — P) =n—p.
(i) PX = X
Proof
OPP=XX'X)"'"XXX'X)"'X' =X (X'X)"' X
() (I-P)[-P)=I-P-P+P-P=1-P
(i) PX =X (X'X) ' X'X =X

2.3.2 When X is not full rank

If X has rank r < p, then the above result still holds but with p replaced by r

Theorem: Suppose that X is n x p of rank r so that P = X (X'X) X' then following hold.

(i) P and I,, — P are symmetric and idempotent.

(i) rank (I,, — P)=tr(I, —P)=n—r

(iii)) PX = X

Proof

X has rank 1, let X be the n*r matrix with r linearly independent column then C[X;] = C[X], then

P=X,(X|X)) "X,

cause the linear space is the same, then it’s easily got that P> = P (I — P)> = (I — P).
Also 3L such that X = XL
thus PX = X, (X! X1) ' X! - X1L=X,L =X

2.4 Residual Sums of Squares (RSS)

We denote the fitted values X ﬁ by Y = (K, .. ,Yn)/ . The elements of the vector
Y-Y=Y-X3
= (In - P) Y,
then
RSS =[(I - P)Y][(I - P)Y]
Y'(I - P)YY

Another way of doing this is
de=(Y - XB)(Y — XB)
—Y'Y - 28X'Y+B8X'XB-3X'XB+3XXj
=YY -3XXB+28 |X'XB-X'Y
Y'Y -3X'Xp3

thus ., R
RSS=Y'Y -3 X'X}3



2.5 PROPERTIES OF LEAST SQUARES ESTIMATES

(3 is an unbiased estimate of 3. That is
Ep)=p
The variance of the Least Square Estimator of 3 is given by
Var[3] = o (X’X)_1
Proof
~ !
Var(8) = (X'X) "' X’ Var(Y)X (X/X)*l} =o2(X'X)"!

2.5.1 Best Linear Unbiased Estimator, BLUE

THEOREM 3.2: Let 6 be the least squares estimate of & = X3 where 6 € Q = C(X) and X may not have
full rank. Then among the class of linear unbiased estimates of ¢’6, ¢'8 is the unique estimate with minimum
variance. We say that ¢/6 is the best linear unbiased estimate BLUE of ¢'0
Proof

0=PY  (LSE)

E (c’é) = E@) =0 ,v0 € Q=c[z] = unbiasness

Let d'Y be another estimator which is linear and unbiased then
BEdY)=dEY)=dXB=d0 % (¢ ~Yg=0 = (d—c)LQ= Plc—d)=0= Pc=Pd
then
Var (d'Y) — Var (dé) = d'Var(Y)d — Var (c'é) = =dPY = (Pe)Y = (Pd)'Y

=d' (¢°I)d — Var [(Pd)'Y] = 0*d'd — (Pd) o (Pd)
=o?d'd— o?d' Pd
=o%d'(I — P)d
=o%d'(I - P)'(I — P)d
=a*[(I = P)d[(1 ~ P)d] > 0

equality holds when
(I-P)d=0=d=Pd= Pc

If X is full rank, then a3 is the BLUE of '3 for every vector a.

2.5.2 Unbiased estimation of o2

THEOREM 3.3 E[Y] = X3 where X is an n x p matrix of rank r(r < p) and Var[Y] = oI,

then . .
o2 _ (Y -0)(Y -0) RSS

n—r n—r

is an unbiased estimate of o2
Proof



residual = (Y — X3) = (I — P)Y
RSS =[(I-P)YJ[(I-P)Y]=Y'(1-P)Y
E(RSS) = E{Y'(I - P)Y} =tr[(I - P)*aI] +(XB) (1 — P)(zf)
———

X—-PX=0

RSS
= F ( ) = g2 unbiased estimator

n—r

3 Linear regression with distribution assumption

Until now the only assumptions we have made about the ¢; are that F(e) = 0 and Var(¢) = o%1,,. If we assume
that the ¢; are also normally distributed, i.e. ¢ ~ N,, (0,021,,) and hence Y ~ N,, (X3,0%I,,). A number of
distributional results then follow.

THEOREM 3.5 if Y ~ N,, (X8,0%I,,), where X is n*p of rank p then

* BN, (802 (X'X)7)

« (B-BYX'X(B-B)/0% ~ x>

* jis independent of 52

© RSS/0? = (0= )50 ~ X2,
Proof

« B=(X'X)"'X'Y and also Y ~ N, (X3,0°I,,).
—_————
then ¢Y NCMVN(cXﬂ, ¢Xc’) where rank(c) = rank(X) = rank(X")
cXB = B,c8C" = o%cc = 0 (X'X) ' X'X [(X’X)‘l] =02 (X'X)7"
* (B-PYX'X(B~P)/0* ~ \Esince B~ N, (B,0% (X'X) )

« B=(X'X)""X'Y and (n — p)S? = Y'(I — P)Y = [(I — P)Y][(I — P)Y] then (X'X) ' X'[I — P] =
——

(x'x)"! X' [[-X(X'X)"'X'] = (X'X)' X' = (X'X) "' X'X(X'X)"' X' =0

o 855 — % since (1 — ) is idempotent with rank(1 — P) = n — r based on THEOREM 2.7 we have
RSS/U =(n—p)S?/o% ~x2_ »

3.1 MLE
Assuming full rank of X, the likelihood is

2\ _ 2\ —n/2 1 _ 2
L(B,0%) = (2m0?) exp 202||Y X3
then the log-likelihood is

5o (¥ = XB) (Y — XB) = ~ 5 log (2m0) — o-(V — XB)/(V ~ Xp)

2y __" 2) _
E(B,U)— 210g(27r0) oy o

where 02 = 1

then

ol 1 set / _

5 2#( 2X'Y +2X'XB) £ 0= Be = (X'X) ' X'Y = Ise = mle
and
o — se . (Y—=XB)(¥ —XfB) RSS Y — XB)(Y — XP3
o = l+7(Y XB) (Y -—XB)E 0= _ B)( ) S lse:( B)( B)
W 2p 2u? n n—p

unbiased estimator for o2



then for the distribution

0%l 1 1 X'X
- (X'X _E|-— (x'x)| =
oo ~ 2N = [ 72 )} o2
0%l 1 . 1 0%l 0%l
= (—2X'Y +2X'X i =(X'X) XY ,— = =
868/1 2’”2 ( + 6) ,sine 3 ( ) ) 868“ auaﬂ
02l n 1 , 0%l -n 1 , -n no?  —n np n
Eee QTLQ—E(Y—X@ (Y-XpB)= —E [_3,“2} = ﬁ+f EY - Xp)(Y - XB)| = QTLQ"‘F 92T T o
(Y=XB) (a2I)" (Y =X B)~x2

then

1y -1
po[RXX 0L [ e 0
0 == o

Bmle asymptotically normal ﬁ (X 'X ) -t o? 0
&r2nle 02 ’ 0 %

3.1.1 review on MLE properties

then we have

Score:The partial derivative with respect to 6 of the natural logarithm of the likelihood function is called the
score

Z=1= %logf(X;ﬁ)

E(Z)=0and Z % N (0,1(6y))

under 6,
Fisher information: The variance of the score is defined to be the Fisher information

I(0) = E

B 2 92
ETICON e] — | gy e [(X:0) | 0

Property 1. If 4 is the MLE estimate of 6, then it has the following property:

3.1.2 Orthogonal columns in the regression matrix

Suppose that in the full-rank model F[Y] = X 3 the matrix X has a column representation where the columns
are all mutually orthogonal

X = (:lt(o),a‘;(l)’ . ’w(pfl))
then we will have
[x<0)/a:(0)]—1 . 0 L0y
B:(X/X)_lX’Y: :[%}
0 T P e e I PO

this implies that under the orthogonal condition, if we only want to estimate certain ; then we don’t need to
fit the whole model instead we can only fit Y on z(7)

3.2 Estimation with linear constrain

The conclusion from this part is applicable under both MLE and LSE cause we only estimate 3

Let Y = X[ + € where X is n*p of full rank p. Suppose that we wish to find the minimum of ¢’e subject to the
linear restrictions A8 = ¢ where A is a known q*p matrix of rank q and c is a known q*1 vector then with
Lagrange multiplier we can get

B =B+ () A A x) ) (e AB)



where 3 is the estimation without constrain, i.e. # = (X'X)" ' X'Y.
A1

Proof let A = ( :

) then we define Lagrange multiplier as
)\q

Lagrange multiplier = (3’4" — C') A

let
§ = min(Y = X8 (Y = X8) + (8'4’ — )
then
9S8 / ’ 7y set / / 1 / A / =1 -/ 1 / =1 47\"
g5 = XY FXXGHANE 05 (XX) 5= XY = 54N = i = (X'X)7T XY = 5 (X'X) T Ay

suppose 3y and A\ are the solution under constrain H : A3 = ¢ then we have

c=Afy=A (X'X)' XY —%A (X'X) ANy = AB — %A(XX)*IA’XH
| ——

3 under no constrain

since rank(A) = ¢, A (X' X)~" A’ is non-singular. Thus
_%XH - [A (X'x)"" A'} “e— Ap)
therefore 1
B =B+ (X'X) A [AXX) A (e AB)
we also need to prove the 35 minimize €’e under constrain
(Y = XB)(Y = XB) = (Y = Xp+ X~ XB)'(Y - X+ Xb — XP)
= (Y = XB)'(Y = XB) + (5~ B) X'X (B~ B)

where

(B-B)X'X(B-B)

(B_BH+BH_6)/X/X(B_BH+BH_5>
(5= hu) XX (5 b)) + (bn—8) XX (b~ 5) +2 (B~ Bur) X'X (Bu — )
(B_BH>/X/X (B_BH) + (ﬁH —5)/X/X (BH —ﬁ)

since
(3 ) 2% (B ) = [ 00307 ] X0 (3 - 8) = 33004 (B = 8) = Jhurte— ) =0
we get

(Y = XBY(Y = XB) = (¥ = X3 (¥ =~ XB) + [X (B~ Bwr)] [X (5~ Bu) ] + [x (Bur — 8)] [ (Bu - 5)]
all three terms are positive, thus minimum achieved when
e ()] =0

ie.
= pn
then we get
[y = ul == - v

10



3.3 Identifiability

The conclusion from this part is applicable under both MLE and LSE cause we only estimate /3
A model is identifiable if it is theoretically possible to learn the true values of this model’s underlying parameters
after obtaining a sample. Mathematically, this is equivalent to saying that different values of the parameters
must generate different probability distributions of the observable variables.
Let

P = {P g:0¢€ @}

then
P(;1 = Pg2 :91 = 92

for Vﬁl, 0> € ©

We have E(Y) = X 3. The design matrix X is n*p and is not full rank. So /3 is not unique. But # = X3 and
is unique. Also RSS = Y’(I — P)Y is unique. We can always have solution to 5 based on g inverse. The other
way is that we impose constraints H so that models are identifiable.

HB =0

o[

B=(G'G) " XY

let

then we have

Proof

Gz(X"X” ):G’:(X’,H’):>G’G:X’X—|—H’H
Hp—ryxp

then G~ exists cause G is full rank. We know
(X'X)B=X'Y, HB=0

thus
(G'G-HH)B=XY =GG=XY =p=(GG) ' XY

We have that 3 is unbiased.
Proof

EWV:EBGGYEWY:4G@r%vmych@vaxg

=(G'G)" (G'G— H'H) B

=B8—(G'G)""H' HpB
s

=B

3.4 Estimability

Since /3 is not unique, 3 is not estimable. We consider function of elements of 3, i.e. a’f3
Definition The parametric function o’g is said to be estimable if it has a linear unbiased estimate, say 'Y
This implies that

EWY)=VEY)=bXB V3

VXB=dp ,VB

a =bVXora=X'b
thus THEOREM 1

a'B is estimatable < a = X'b

SaeCX'] or

THEOREM 2 if a’3 is estimable and B is any solution of the normal equation then (1) o B is unique and (2)
a’f3 is the BLUE of a’f3

THEOREM 3 «’f is estimable if and only if o’ (X'X)” X'X =a’

11



Proof
= a’f is estimable then

Jest.d =X
=>d(X'X) X'X=XX'X) X'X=PX=(X=d

= suppose ¢’ (X'X)” X'X = d’ then

E {a'ﬁ} —F [a' (X'X)" X'Y| = (X'X)” X'XB = d'B

4 Generalized least square

Having developed a least squares theory for the full-rank model Y = X 3+ ¢, where E(¢) = 0 and Var(e) = o1,
we now consider what modifications are necessary if we allow the ¢; to be correlated. In particular, we assume
the Var[e] = 02V, where V is a known n*n positive-definite matrix.

Theorem 4.1. Under the above setting, we have
g = (XV'x) xX'Vy
Var[8] = 02 (X'V X))
RSS == (Y - XB") V1 (Y - XB")
Proof Y = X3 + ¢, where e ~ N(0,02V). Since V is a positive-definite
= 3K, s.t. V= KK', K1 exist
then write
—1 _ —1 —1 _
k'Y =K "'Xf+K 'e=>z=Bp+n
z B "
, where E(n) = 0, Var(n) = 021 since

1

E(n)=E(K™') =0 ;Var(y) = Var (K '¢) = K" Var(e) (K ') = K '0®’KK' (K') " = oI

B =(B'B)'BZ= (XK VEK'X) " X'KVK'Y = (X'V'X) T X'VY

E(B*) = (X'Vﬂ)()_1 X'V-'XB =/ unbiased
Var (%) = (X'Vle)_1 X'V Var(Y) {(X’V*l)()_1 X'Vfl}/ — (X’Vle)_l X'V-lo2V {(X’V*IX)_I X’Vfl]/
= (X'VX) " o?

E]=(XV'X) ' X'V'X3=3
E[(Y -XB") V(Y - XB")] = (n—p)o®

RSS =(Z - BB*) (Z-BB") = (K'Y - K 'X8") (K™Y - K~1X3")
= (Y - xp (K1) K1 (Y - X5%)
= (Y -Xp")' VY - Xp%)
Alternative method for deriving the 3 is minimizing n’'n with respect to 3
,’7/77 _ e/‘/71e
=(Y - XB)V Y - Xp)
=Y'Vy -2 X'Vy + gX'VIXp
on'n

8 = —2X'V'Y +2X'VIXB E 0
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we also get
g = (XVX) X'VYy
A special case is that when
V = diag (wfl,wz_l,~-~ ,w;l) (w; > 0)

we have
> wiYir,

(Evix) " = v = (D)

Theorem 4.2. o' 3* is the best linear unbiased estimate (BLUE) of a’ 3 under the generalized linear model.

ﬁ*

Proof
JB=d (X'VIX)T X'VTY =bY

b/
is lienar in Y and also unbiased. Let ¥’ ;Y be another unbiased linear estimator of a’j
aB*=d (BB 'BZ
VY =b,KK™'Y = (K'by) Z

by previous theorem BLUE:
Var (a’*) < Var ((K’bl)/ Z) = Var (b}Y)

equality holds if and only if

1

(K'by) =a' (B'B)'B' =V, K=a'(B'B) "B =t,=d (BB)'BK '=a (X'V'X)" XV =V

5 Hypothesis Testing

We are interested in the form of Hy = A5 =0

5.1 Likelihood ratio test

G:Y;, =80+ Prxyn +---+ Bp,1$i7p,1 + ¢;, full model
H:Y;,=po+ pixi1 + -+ + Br—1%s r—1 + €, reduced model

Hypothesis of interestis Hy : 8, = Br41 = - ... .. =Bp-1=0

Given the linear model G : Y = X3 + ¢, where X is n*p of rank p and € ~ N,, (0,521,,), we wish to test the
hypothesis Hy : Ag = 0, where A is q*p of rank q. the likelihood function for G is

_n 1
L (,3,02) = (27702) /2 exp {—MHY — X,8||2

under the MLE R
> =Y - XBIP/n

then the likelihood becomes R )
L (ﬁ,&Q) = (276?) e/

let By and o2y be the estimator of Y = X3 + ¢ when A = 0, then under the hypothesis
L (B, 0%) = (2n0%) "7 /2

then the likelihood ratio test of H is given by

L (ﬁ}q,&%,) 5272
) )
o)

We have learned that —2/ogA has a chi-squared distribution.

13



5.2 F test

In summary

has an F} ,,_, distribution when Hj is true. And we also have

N ~ 2 “ -1
RSSH—RSS:HY—YHH —(AB-o[a(x'X)7 4] (AB-¢)

E[RSSy — RSS] = 02¢ + (AS — ¢) [A (x'x)" A’} 48— ¢
= a%q+ (RSSu — RSS)y_py)

imjrovement »
(RSSH - RSS) Ja (AB—¢) [A (X'x)"! A’] (A — ¢)
RSS/(n—p) ¢S

is distributed as F, ,,_, (the F-distribution with q and n-p degrees of freedom, respectively)

F =

e when ¢ = 0, F can be expressed in the form

n—pY'(P—Py)Y

F:
¢ Y (I,-P)Y

where Py is symmetric and idempotent and Py P = PPy = Py

Proof y = X + ¢, where rank(X) = p, rank(A) = gand Hy : AB = c. Under the constrain, Hy : AS = c we
know

By =B+ X'X) A [A (X'x)"" A'} - (c— AB) (1)

N 2 N R N 2
also since we have HY - YHH =Y -Y|*+ HY — YHH we get

RSSy = RSS + (f - BH)’ X'X (B B
from 1 we know that .
B =B = (X'X) A [AX'X) A (e AB)
and
RSSy — RSS = (/- BH)/X’X (5~ fn)
c— ABY [AXX) T A T AKX X)X X)(XX) A [A (X'x)' A B (c— AB)
c— ABY [AX'X) T A (c— AB)
AB =) [AXX) AT (AR — o)

—~ ~~

the first equation is proved
We also know that R
AB ~ N(AB, A(X'X)"" A o?)
~—_————
B

let Z = AB — ¢ then Var(Z) = Bo? we have

E(RSSy — RSS) = E [(AB — o) [AX X)L AT (4B - c)] — E[72'B'Z]
=tr(¢?B7'B) + (AB — ¢)'B™1(AB —¢)
= tr(0% I xq) + (AB —¢)'B™1(AB —¢)
— 02q+ (AB — o) [A(X'X 1A ™ (A8 —¢)
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the second equation is proved
Hy: AB = ¢, under Hy, A ~ N (c — AB, oA (X'X) " A') thus

RSSH — RSS 9
= o2 ~ Xq

(AB —¢) [02,4 (xX'x)"! A’] T 4f— o

we also have
RSS 9
~ Xn—p

o2
and previously we learned that RSS is independent of /3, thus RSSy; — RSS L RSS. Therefore,
RSS g — RSS /(02/q) ~ x?

% > independence =—~F, ,_
RSS /(02/(n —p)) ~ Xi_p e

the third equation is proved
when ¢ = 0,

Yy = XBy = X {B XX A [A (X'x)"" A’} - AB)]

—1

-1
—PY - X (X'X)* A [A (xX'x)"! A’} AX'X) XY
P
—(P-P)Y
——
Py

here Py is symmetric since we know P; is symmetric and idempotent. We can also show PP = PP, = P;.
Further, Py is idempotent

P}=(P—-P)(P—-P)=P>— PP — PP, + P}
=P—-2P+P,=P—-P =Py

also PPy = Py and ,
RSSy = HY - XBHH — Y —PyY|P =Y (I - Py)Y
RSS = Y'(I - P)Y

6 Some comments about ANOVA

Consider one-way ANOVA
simple mean

trtl  Yiq,Yie,..., Y15, n
trt 2 Yor,Yao,...,Ya s, Y2
ttl Y7, Yr,..., Y7 g, Yr
M1
‘ . ’ M2
the modelis Yi; = pu; +ei5 , (i=1,2,....,0,5=1,...,.Jy), = : » assume &z ~ N (0, 0%), then
[i1
Y11 _ -
: 100 0
YL 10 0 0
Yo1 T 1;, 05 --- 0y
. 010 0
. : : O, 15 -+ Ogp
we can write as = : L, =X = ) . To test hypoth-
Y2, 15 ) j15) :
: 00 0 -« 1 |Lw 05, 0y -+ 1y
Yy
L0 0 0 iy
Yr,J;
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esis, Hy : p1 = pg = - -- = py (testable since X is full rank) A5 =0 <

0 0 O 1 -1

Then proceed with usual F-test F' = M@%_ ALTERNATIVELY, we can write S = >, > (yij — i),

. ZJU _
where S is the error sum of squared €, g—i = 0= 2,20 —m) =0 = p = Jiy = 7;, RSS =

> Zj (yij — [Li>2 =3, Zj (yij — gji)2 and under Hy S = ), Zj (yij — ,u)2 — error sum of squared , g—i =

0=2>,>Wj—pn=0=jp= % =Y + overallmean. Thus RSSy = Y, > (Wij —p)? =

_ 9 ) A hus 725 2 (s
> Zj (yij - Y) . Then RSSy — RSS =3, Zj (9ij — ZJH)2 =5 Zj (yl - Y) =3 J; (yi _ Y) _ There-
>, Ji(5:-Y)/(I-1) 7 o

Ziz_j(yi*gi)2/(n7]) p=1,q=1

fore, using the F-test F' =
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