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1 Hilbert Space

1.1 Definition

We will focus primarily on the Hilbert space whose elements are random vectors with mean zero and finite
variance. For random variable Z, it is equipped with an underlying probability space (Z ,A, P ), where Z is
the sample space, A is the corresponding σ-algebra, and P is the probability measure.
Consider the space consisting of q-dimensional mean-zero random functions of Z,

h : Z → Rq

where h(Z) is measurable and also satisfies

(i) E{h(Z)} = 0
(ii) E

{
hT (Z)h(Z)

}
< ∞

In the same way that we consider points in Euclidean space as vectors from the origin, here we will consider
the q-dimensional random functions as points in a space. Therefore, we define the origin of this space as

h(Z) = 0q×1

A Hilbert space, denoted by H, is a complete normed linear vector space equipped with an inner product. As
well as being a linear space, a Hilbert space also allows us to consider distance between elements and angles
and orthogonality between vectors in the space. This is accomplished by defining an inner product.

Definition 1.1. (Inner product)
Corresponding to each pair of elements h1, h2 belonging to a linear vector space H, an inner product, defined by
⟨h1, h2⟩, is a function that maps to the real line. That is, ⟨h1, h2⟩ is a scalar that satisfies

1. ⟨h1, h2⟩ = ⟨h2, h1⟩

2. ⟨h1 + h2, h3⟩ = ⟨h1, h3⟩+ ⟨h2, h3⟩, with h1, h2, h3 ∈ H

3. ⟨λh1, h2⟩ = λ ⟨h1, h2⟩

4. ⟨h1, h1⟩ ≥ 0 with equality if and only if h1 = 0

Definition 1.2. (Inner product for q-dimensional measurable random functions)

⟨h1, h2⟩ = E
(
hT
1 h2

)
Definitions that follows

1. equivalence: h1 ≡ h2 if h1 = h2 a.e.

2. norm/length: ∥h∥ = ⟨h, h⟩1/2

3. orthogonality: h1 ⊥ h2 if ⟨h1, h2⟩ = 0
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Definition 1.3. (linear subspace)
A space U ⊂ H is a linear subspace if u1, u2 ∈ U implies au1+ bu2 ∈ U , ∀a, b ∈ R. A linear subspace must contain
the origin. This is clear by letting the scalars be a = b = 0

Theorem 1.4. (Cauchy-Schwartz inequality)
∀h1, h2 ∈ H

|⟨h1, h2⟩|2 ≤ ∥h1∥2 ∥h2∥2

with equality holds if and only if h1 = ch2 for some c ∈ R

1.2 Projection theory

Theorem 1.5. (projection of h onto U)
Let H be a Hilbert space and U a linear subspace that is closed (i.e., contains all its limit points). Corresponding to
any h ∈ H, , there exists a unique u0 ∈ U that is closest (in terms of the distance defined above) to h; that is

∥h− u0∥ ≤ ∥h− u∥, ∀u ∈ U ,

in addition, (h− u0) ⊥ U , that is
⟨h− u0, u⟩ = 0, ∀u ∈ U .

Figure 1: Projection onto a linear subspace

Theorem 1.6. (Pythagorean Theorem)
if h1, h2 ∈ H and h1 ⊥ h2 then

∥h1 + h2∥2 = ∥h1∥2 + ∥h2∥2

Example 1. (One-Dimensional Random Functions)
Consider the Hilbert space H of one-dimensional random functions, h(Z), with mean zero and finite variance. Let
u1(Z), . . . , uk(Z) ∈ H, then U is the linear subspace spanned by {u1, · · · , uk}.

U =
{
aTu; for a ∈ Rk

}
, uk×1 =

 u1

...
uk


u is the basis.
To derive the projection of ∀h ∈ H, let’s go through the following steps〈

h− aT0 u, a
Tu

〉
= 0, ∀a = (a1, . . . , ak)

T ∈ Rk

E
(
huT

)
− aT0 E

(
uuT

)
= 0(1×k)

aT0 = E
(
huT

) {
E
(
uuT

)}−1

u0 = aT0 u = E
(
huT

) {
E
(
uuT

)}−1
u.

The norm-squared of this projection is equal to

E
(
huT

) {
E
(
uuT

)}−1
E(uhT )
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since ∥∥a⊤0 µ∥∥2 = E

[
E
(
huT

) {
E
(
uuT

)}−1
uuT

{
E
(
uuT

)}−1
E(uhT )

]
= E

(
huT

) {
E
(
uuT

)}−1
E(uhT )

2 The Geometry of Influence Functions

Problem setup: Z1, . . . , Zn are i.i.d random vectors with the density belongs to {pZ(z; θ), θϵΩ}. θ =
(
βT , ηT

)T
,

where βq×1 is the parameterof interest and η is the nuisance parameter, may be finite- or infinite-dimensional.
An estimator β̂n of β is a q-dimensional measurable random function of Z1, . . . , Zn. Most reasonable estimators
for β are asymptotically linear; that is, there exists a random vector (i.e., a q-dimensional measurable random
function) φq×1(Z) s.t. E{φ(Z)} = 0q×1,

n1/2
(
β̂n − β0

)
= n−1/2

n∑
i=1

φ (Zi) + op(1).

It follows that by the CLT

n−1/2
n∑

i=1

φ (Zi)
D→ N

(
0q×1, E

(
φφT

))
,

and
n1/2

(
β̂n − β0

)
D→ N

(
0, E

(
φφT

))
.

Remark 1. The function φ(Z) is defined with respect to the true distribution p (z, θ0). Consequently, we sometimes
may write φ(Z, θ). Therefore,

Eθ0 {φ (Z, θ0)}

The class of influence functions for estimators belongs to the Hilbert space of all mean-zero q-dimensional
random functions with finite variance.

Theorem 2.1. (Uniqueness of influence function)
An asymptotically linear estimator has a unique (a.s.) influence function.

Example 2. For Zi ∼ N(µ, σ2), i = 1, ·, n, µ̂n = n−1
∑n

i=1 Zi, and σ̂2
n = n−1

∑n
i=1 (Zi − µ̂n)

2.

n1/2 (µ̂n − µ0) = n−1/2
n∑

i=1

(Zi − µ0)

n1/2
(
σ̂2
n − σ2

0

)
= n−1/2

∑{
(Zi − µ0)

2 − σ2
0

}
+ n1/2 (µ̂n − µ0)

2
.

Remark 2. (Asymptotically efficient)
We know that the variance of any unbiased estimator must be greater than or equal to the Cràmer-Rao lower
bound; see, for example, Casella and Berger (2002, Section 7.3). When considering asymptotic theory, where we
let the sample size n go to infinity, most reasonable estimators are asymptotically unbiased. Thus, we might expect
the asymptotic variance of such asymptotically unbiased estimators also to be greater than the Cràmer-Rao lower
bound. This indeed is the case for the most part, and estimators whose asymptotic variance equals the Cràmer-Rao
lower bound are referred to as asymptotically efficient.

2.1 Super-Efficiency

Example 3. (Hodges’s example)
XXX

Definition 2.2. (Regular)
Consider a local data generating process (LDGP), where, for each n, the data are distributed according to θn, where
n1/2 (θn − θ∗) → c, for some c ∈ R. That is

Z1n, Z2n, . . . , Znn ∼i.i.d p (z, θn) ,

where θn =
(
βT
n , η

T
n

)T
, θ∗ =

(
β∗T

, η∗
T
)T

. An estimator β̂n(Z1n, . . . , Znn) , is said to be regular if, for each θ∗,

n1/2
(
β̂n − βn

)
has a limiting distribution that does not depend on the LDGP.
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Definition 2.3. (Score vector)
For Z ∼ pZ(z, θ), θ =

(
βT , ηT

)T ,

Sθ (z, θ0) =
∂ log pZ(z, θ)

∂θ

∣∣∣∣
θ=θ0

Sθ (Z, θ0) =
{
ST
β (Z, θ0) , S

T
η (Z, θ0)

}T

where

Sβ (z, θ0) =
∂ log pZ(z, θ)

∂β

∣∣∣∣q×1

θ=θ0

Sη (z, θ0) =
∂ log pZ(z, θ)

∂η

∣∣∣∣r×1

θ=θ0

.

Theorem 2.4. Let the parameter of interest β(θ) be a q-dimensional function of the p-dimensional parameter θ,
q < p, such that Γq×p(θ) = ∂β(θ)/∂θT , the q × p-dimensional matrix of partial derivatives, exists, has rank q,
and is continuous in θ in a neighborhood of the truth θ0. Also let β̂n nbe an asymptotically linear estimator with
influence function φ(Z) such that Eθ

(
φTφ

)
exists and is continuous in θ in a neighborhood of θ0. Then if β̂n is

regular, this will imply that
E
{
φ(Z)ST

θ (Z, θ0)
}
= Γ (θ0) .

In the special case where θ can be partitioned as
(
βT , ηT

)T , we have

E
{
φ(Z)ST

β (Z, θ0)
}
= Iq×q

E
{
φ(Z)ST

η (Z, θ0)
}
= 0q×r,

where Iq×q is the q × q identity matrix and 0q×r is the q × r matrix of zeros.

2.2 Geometry of Influence Functions for Parametric Models

Consider the Hilbert space H of all q-dimensional measurable functions of Z with mean zero and finite variance
equipped with the inner product ⟨h1, h2⟩ = E

(
hT
1 h2

)
.

Definition 2.5. (Tangent space)
We first note that the score vector Sθ (Z, θ0), under suitable regularity conditions, has mean zero (E {Sθ (Z, θ0)} =
0p×1). We can define the finite-dimensional linear subspace T ⊂ H spanned by the p-dimensional score vector
Sθ (Z, θ0) as the set of all q-dimensional mean-zero random vectors consisting of

Bq×pSθ (Z, θ0) , ∀Bq×p.

The linear subspace T is referred to as the tangent space.

Definition 2.6. (Nuisance tangent space)
In the case where θ =

(
βT , ηT

)T , consider the linear subspace spanned by the nuisance score vector Sη (Z, θ0),

Bq×rSη (Z, θ0) , ∀Bq×r.

This space is referred to as the nuisance tangent space and will be denoted by Λ.

Note that Theorem 2.4 states that the q-dimensional influence function φβ̂n
(Z) for β̂n is orthogonal to the

nuisance tangent space Λ.

2.3 Constructing Estimators

Influence functions of RAL estimators for β must satisfy conditions of Theorem 2.4, , a natural question is
whether the converse is true; that is, for any element of the Hilbert space satisfying conditions of Theorem 2.4,
does there exist an RAL estimator for β with that influence function? Let φ(Z) be a q-dimensional measurable
function with zero mean and finite variance that satisfies conditions of Theorem 2.4. Define

m(Z, β, η) = φ(Z)− Eβ,η{φ(Z)}.

Assume that we can find a root-n consistent estimator for the nuisance parameter η̂n (n1/2 (η̂n − η0) is bounded
in probability). In many cases the estimator η̂n will be β-dependent (η̂n(β)). For example, we might use the
MLE for η, or the restricted MLE for η, fixing the value of β. We argue that the solution to the equation

n∑
i=1

m {Zi, β, η̂n(β)} = 0

which we denote by β̂n will be an asymptotically linear estimator with influence function φ(Z).
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Proof. By construction, we have
Eβ0,η {m (Z, β0, η)} = 0,

or equivalently, ∫
m (z, β0, η) p (z, β0, η) dν(z) = 0.

Consequently,

∂

∂ηT

∣∣∣∣
η=η0

∫
m (z, β0, η) p (z, β0, η) dν(z)

=

∫
∂m (z, β0, η0)

∂ηT
p (z, β0, η0) dν(z) +

∫
m (z, β0, η0)S

T
η (z, β0, η0) p (z, β0, η0) dν(z) = 0.

By definition, E
{
φ(Z)ST

η (Z, θ0)
}
= 0. Consequently,

E

{
∂

∂ηT
m (Z, β0, η0)

}
= 0.

Similarly, we can show that

E

{
∂

∂βT
m (Z, β0, η0)

}
= −Iq×q.

A standard expansion yields,

0 =

n∑
i=1

m
{
Zi, β̂n, η̂n

(
β̂n

)}
=

n∑
i=1

m
{
Zi, β0, η̂n

(
β̂n

)}

+

 n∑
i=1

∂m

∂βT

Zi, β
∗
n, η̂n

(
β̂n

)
︸ ︷︷ ︸

Notice that this term is held fixed


(

β̂n − β0

)
, β∗

n ∈ (β̂n, β0).

Therefore,
n1/2

(
β̂n − β0

)
= −

[
n−1

n∑
i=1

∂

∂βT
m

{
Zi, β

∗
n, η̂n

(
β̂n

)}]−1

︸ ︷︷ ︸
⇓

[
n−1/2

n∑
i=1

m
{
Zi, β0, η̂n

(
β̂n

)}]

[
E

{
∂

∂βT
m (Z, β0, η0)

}]−1

= −Iq×q

For the second term,

n−1/2
n∑

i=1

m
{
Zi, β0, η̂n

(
β̂n

)}
= n−1/2

n∑
i=1

m (Zi, β0, η0) +

{
n−1

n∑
i=1

∂m (Zi, β0, η
∗
n)

∂ηT

}
︸ ︷︷ ︸

⇒pE
{

∂

∂ηT m(Z,β0,η0)
}
=0

[
n1/2

{
η̂n

(
β̂n

)
− η0

}]
︸ ︷︷ ︸

bounded in probability

.

Therefore,

n1/2
(
β̂n − β0

)
= n−1/2

n∑
i=1

m (Zi, β0, η0) + op(1)

= n−1/2
n∑

i=1

φ (Zi) + op(1)
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