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1 Foundation

1.1 Review on MLE

Central limit theorem: Suppose {X;, Xo,..., X, } is a sequence of i.i.d. random variables with F(X;) = u
and Var(X;) = 02 < oo thenas n — oo, X — N(p, %2)

Score:The partial derivative with respect to 6 of the natural logarithm of the likelihood function is called the
score

0
Z=1= &glogf(X 0)
E(Z)=0and Z 4, N (0,1(00))

under 6,
Fisher information: The variance of the score is defined to be the Fisher information

(gbwm0014=—[;g%ﬂxww}

Total information and observed total information

7(0) =E

1r(0) = —E{a 882 - log L(0 | Y)}
92
I-(Y,0) = fwlogL(O |Y)
Information estimation
* Version 1 .
o a0

i=1

! : 0
=n" — 1 Y;; 0
" 7;_1{ 0000" o8 f( )}
e Version 2

I 1is YZ,B
Z:Ll -
Z{bwmw}
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Property 1. If 4 is the MLE estimate of 6, then it has the following property:

~ d 1
0—6 N
Vil = o) % N(0, 75)
Ways for estimating MLE:
* Newton-Raphson algorithm
0
_ ~s(g® )
0=5(6)~s(6")+ {505(0) HM} (6-0)

_s (9<”>) I (Y, 0<”>> (0 - 0(”>)

60U =0 117 (Y, 9<”))_1 s ()

1. start with initial §(©)



2. update from current (%) to obtain #(v+1)

3. stop if HS (0("“)) H or HO(”H) 1

is sufficiently small

Note: Newton-Raphson estimator has local quadratic convergence property

R N 2
Hg(l“rl) - QMLEH <ec HG(”) - GMLEH for some ¢ > 0

This property exists for the situation where the estimator is very close to the true parameter. Thus, at
least near the solution, convergence is fast for a Newton method.
More specifically, the local quadratic convergence holds under the following conditions

1. I7(Y,0) # 0 in a neighborhood of OrLE
2. S”(0) is bounded

3. ) is sufficiently close to Gy

Proof draft:
0=5 (Gue) =5 (007) = r (Y,0°) (G — 0)

+ %S” (947) (B 9@))2

1 5" (19(”)) (,\

2
_pun 1 2 W) _ W
b T 217 (Y,60)) buwe — 0 )

OMLE

where 9) = 00) 4 k x (Oyg — 0%)), k € [0, 1]. This uses the Taylor expansion with Lagrange
remainder. One-step estimator: typically, Oyig — 6 = O, (n~'/?). If one starts with (%) such that
0 — 0 =0, (n""/?), then

0(1) — /O\MLE = Op (nfl)

under regularity conditions. That is (°) and 6y is asymptotically equivalent.

Fisher scoring algorithm
Ir (Y, 0(”)) replaced by its expectation I (0(")), which is

e+ — g L1, (9(u>> S (9(1’))

EM algorithm

The basic idea of the EM Algorithm is to view the observed data Y as incomplete, that somehow there is
missing data Z that would make the problem simpler if we had it. In some cases Z could truly be missing
data, but in others it is just additional data that we wish we had.

1. The first step is to write down the joint likelihood of the “complete” data (Y, Z), callit Lo(6 | Y, Z).
The “E” step of the EM Algorithm is to compute the conditional expectation of log Lc(0 | Y, Z)
given Y assuming the true parameter value is o)

0 (9, o) Y) = B {logLe(0 | Y, Z) | Y
_ /log Le(® Y. 2)fzy (2] ¥,00)) dz

2. M step: calculate 0“*Y) that maximizes Q (0, 0", Y) wrt 6
The plausibility of EM

Lemma 1.1. For Y ~ f (y;6o), Eg¢,{log f(Y;0)} is maximized at 8 = 6

Proof: Note that ¢)(x) = —log() is a convex function for z € (0, 00), since ¥”'(z) = 272 > 0. Then
by Jensen’s inequality we have

o 0] < {5

and since Fp, { f(yygo))} 1l f((;”;]))f y;00) dy = 1 we get Ep, [log { ]f((;fo)) H <0




1.2 Review on GLM

some materials: on two forms, canonical forms, GLM and exponential family,
Exponential family: Y with distribution with the density of the form

Y~ f(y; 0, 0)

=eXp{y9a_(;)(9) +C(y,¢)}

where
* # is the canonical (natural) parameter — often the parameter of interest
* ® is dispersion (scale) parameter — often nuisance parameter
Exponential family also has another commonly used form A good material here
p(a | n) = h(z)exp {n" T(z) — A(n)}

parameter vector 7, often referred to as the canonical parameter for given functions T and h. The statistic T(X)
is referred to as a sufficient statistic. The function A(n) is known as the cumulant function and

A(n) =log / h(z) exp {nTT(x)} v(dz)

with respect to the measure v
For example, for normal distribution,

1 _ 2
i0?) = o | -t}

then

°

>
I
=

or

then

-2
Al = 255 +1ogo = L Llog (~2m)
h(z) = \/%
We also have the following property
Property 1.
E(Y)=10(0)


https://spia.uga.edu/faculty_pages/rbakker/pols8501/MLENotes13a.pdf
https://us.sagepub.com/sites/default/files/upm-assets/105189_book_item_105189.pdf
https://www.stat.berkeley.edu/~mjwain/Fall2012_Stat241a/reader_ch8.pdf
https://people.eecs.berkeley.edu/~jordan/courses/260-spring10/other-readings/chapter8.pdf

Proof
Y6 — b(0)

0) = log f(¥36,0) =

+ (Y, 9)

Then the score function for 6 is
_oLe) Y =U(9)

VO =36 = ~a@)

Since E(U(#)) = 0, we have

Since E(U(#)) = 0, we have

Var(U(6)) = E (agg@) - _E (a ;;f )) — \f;r(%) - i/(g)) — Var(Y) = ¥ (6)a(0)

1.2.1 Newly introduced in 711

Exponential family distributions {Fp, 8 € 2} have densities of the general form

f(x;0) = h(z)exp {Zgi(G)Ti(x) - 3(9)}

this representation is not unique. A version with the smallest s is called minimal exponential family under this
case both T/s and g;0's are free of linear constraints, which means

S
ZCiTi(ﬂﬁ):Cs-s-l ae.v=—c¢=0,1=1,---,5s+1
=1

With minimal exponential family (7}, - -- ,Ts) is minimal sufficient. Natural parameter space

Qo = {0 : /h(x) exp {Zgz(O)Tz(x)} dv(z) < oo}
Canonical representation
f(xin) = h(z)exp {Z niTi(x) — A(n)}

by integration equal to 1 we have

[ harex {Znﬂm} dv(a) = exp [A(r)

with the canonical parameter n = ¢g(0) and accordingly

Q, = {77 : /h(a:)exp {Z nLTL(x)} dv(x) < oo}

is another form of the natural parameter space.
If 7 is in the interior of 2, then the m.g.f of T" exists in a neighborhood of u = 0

My (u) = Eev Tt FusTs
— / exp{ > _u;T} - h(x)exp {Z niT; — A(U)} dv(x)

= /h(m) exp {Z (s +ug) T; — A(Tl)} dv(z)
[y O )

exp{A(n)}
_ exp{A(n+uw)} Al )= A(n)
exp{A(n)}



Kr(u) = log {Mr(u)} = A(n+u) — A(n)

therefore 2A(m) 52 A(m)
n _ n _
o = BT} S50 = Var(T (X))

also 52A(n)

n

I =—2 = T(X
() = G = Var{T(X)}

curved exponential family: dim(n) > dim(0)
Completeness: a set of statistics T = (T3,---,Ts) is complete with respect to the family of their induced

distributions indexed by ¢ if there are no functions ®(7") other than ® = 0 such that Eg¢(T) =0 for all 6 € Q

complete sufficient statistics + minimal sufficient statistics

Lehmann-Scheffe theorem: If a statistic is unbiased, complete and sufficient, then it is the unique best unbiased
estimator.

Sufficient statistic (71, - ,Ts) of a canonical exponential family is complete sufficient provided that the family
is minimal and that the parameter space contains an s-dimensional rectangle (which ruled out the curve
exponential family).

Distribution of sufficient statistics

X ~ exponential family with n = (¢, ) :
F@: 6 1) = hlw) exp { S GUI@) + S5y 6575 () — A, 9) }
then
1. the distribution of (U, T') is an exponential family

2. marginally 7" is an exponential family
F(&:¢,9) = q(8)C(C) exp QD ity — A(C, )
j=1

3. conditional distribution of U given T' = ¢ is an exponential family
f(a]t;¢) = ge(u) exp {ZQ% - At(C)}
i=1

1.3 Families of distributions, moments / cumulants, and quantiles / percentiles
Families of distributions
* Parametric model or parametric family: a set of distributions indexed by a finite dimensional parameter
0= (01, .0)" . {F(y:0):0 €0}
* Semiparametric model: a set of distributions indexed by a finite dimensional # and some infinite

dimensional parameters
for example

{f (y; s fo) = foly — ) : —o0 < p < 00, fo € C, where C is a class of continuous unimodeal densities}
where 1 belongs to the parametric part and the f, belongs to the nonparametric part

* Nonparametric model: a set of distributions indexed by infinite dimensional parameters
for example
Y, =9(X;)+e;, densityofeecC

where ¢(.) belongs to a class of functions with certain smoothness
* jth population moment of random variable Y

with its sample counterparts as

n
r -1 7
m; =n g Y;
i=1



jth population central moment of rvY
i =E[{Y - BY)Y]

with its sample counterparts as
n
-1 o\ J
mj=mn g (Yi — Y)
=1

moment generating function (MGF)
m(t) = E{exp(tY)}
a useful trick is to write the MGF as
Mt)=E(*)=EQ+tX+ - +t"X"/rl+-)

oo
= Z wrt” /7!
r=0

which implies that
. = M7(0)
cumulant generating function (CGF)
k(t) = log{m(t)}

it’s useful to remember that
K(t) =log M(t) =Y r,t"/r!

which is just from the Taylor expansion for K(t) (note: the Taylor expansion around O is f(z) =

(n) ) . . .
S £7(0) ™) a nice material on this topic

n=0 n!
jth population cumulant _
Rj = k(j)(())
for example
k1 = pj( mean)

Ky = b — K7 ( variance )

proof:
K1 = Iil = m,(t)
1=r'(0) o) |
_ Elexp(tY)Y]
Elexp(tY)] |,_o
= E[Y] =
e "(t)m(t) — [m'(t)]?
H(t) = = me(t) 2 o
— E(Y?) - B(Y)? = 1ty - }
skewness X, , . [(X ) u)g]
skew = E l(g) _ B _ _ ug/ug/Q

g3 3/2

ot BIX -

which measures symmetry. Note that we are using the central moment in the definition
= 2 = ,u4/lu‘§

(XU_M>4 (E(X =n)?)

which measures tail mass. Note that for Normal distribution skew =0, kurt = 3

kurtosis

kurt = E b [(X — M)4]

coefficient of variation . ,
1/2
CV == =" /u
i
for non-negative random variable, providing a relative standard deviation

quantile
np = inf{z : F(z) > p} = F~'(p)
the last equality holds only when F is a strictly monotone function and X is continuous


https://galton.uchicago.edu/~pmcc/courses/stat306/2017/cumulants.pdf

1.4 Transformation of random variables

Jacobian method: Let fx, x, (z122) be the value of the joint probability density of the continuous random
variables X; and X at (z1,x2). If the functions given by y; = u; (21, 22) and ya = us (z1,22) are partially
differentiable with respect to x; and x> and represent a one-to-one transformation for all values within
the range of X; and X, for which fx, x, (z122) # 0, then, for these values of x; and z,, the equations
y1 = uy (z1,22) and yo = ug (21,22) can be uniquely solved for z; and z» to give 21 = w; (y1,y2) and
x9 = wa (Y1, y2) and for corresponding values of y; and y-, the joint probability density of Y1 = uy (X1, X2)
and Y3 = uy (X1, X3) is given by

vive (11y2) = fxix, [wi (Y1, y2) , w2 (y1y2)] - |J]

where J is the Jacobian of the transformation

6301 8301

— 1 2

'] - 67412 67412
Y1 Y2

all other points of fy,y, (y1y2) =0
Distribution function method: suppose we have the distribution function for Y as Fy (y;0) = P(Y < y). But
we want the distribution function of X = ¢(Y). Then

Fx(x;0) = P{X < a} = P{g(Y) < «}
if g is a strictly increasing function which means g—! exists then
Fx(2;0) = P{g(Y) <2} = P{Y < g7 '(2)} = Fy {g” ' (2); 0}

if functions are differentiable then

dg—'(x)

fx(2;0) = fy {g~ " (2); 0} y

other transformation methods

1.5 Others

Theorem 1.2. Singular value decomposition
Suppose A is an n*p matrix of rank r, where r < min(n, p). There exists orthogonal matrices Uy, and V;,x,, such
that

p (A0 - p (A0
VAU(O O)HAVDU,WhereD<O 0)
where A = diag (41, ...,0,) is an r*r diggonal matrix with §; > 0o ... > 6, > 0. The ¢; are called the singular

values of A.

2 Likelihood construction and estimation

2.1 Introduction

Likelihood is the joint density of the observed data.
For example

* in models for censored or missing data, the likelihood is not the density of the so-called “complete” data
that includes the censored or missing values. Rather it is the density of only those components of the
data that are observed and used in the statistical analysis

* consider an iid sample Y7, ...,Y,,, and a parametric transformation h(y, «) strictly increasing in y for each
«. The model assumption is i (Y1, @), ..., h(Y,, «) are iid with common density f(y; @) and distribution
function F'(y; 0), where « and 6 are both parameters in the model. To construct the likelihood, we need
to find the likelihood of the observed data Y rather than A(Y"). The distribution of Y; is (we can also use
Jacobian method here)

P{Y; <y} =P{h(Yi,a) < h(y,a)} = F{h(y,a);0}
taking derivative wrt y

Oh(y, a)

fy(y;0,0) = f{h(y,a); 0} 9y


http://www2.econ.iastate.edu/classes/econ671/hallam/documents/Transformations.pdf

thus the likelihood is
L(0,0;Y) = Hf{h (Y;,a); 0}

i=1

{ Oh(y, )
dy

y=Y; }

a common mistake is missing the { %ﬁf")

} part here

y=Y;
éMLE of size b x 1 is derived by maximizing
((0) = log{L(6 | Y)}
under differentiable assumptions we can also solve for
S(0) = {¢(6)}"

in vector calculus notation
Q) = 9L — (oL ... oL
é(e)_aig_(aiela ’891,)

o
. 80,
oL o
vO)" = (5) =aor = | :
o0
a0y,
and
6?2% aeaiaéa
2 1 001 2
0O =5 (ar) == | |~ ()
00 00 0000 920 9% 80]801 i=1,- ,b,j=1,---.b
801895 82913

2.2 Likelihood construction
* For discrete IID case, multinomial distribution is widely used cause
1. any discrete distribution with a finite support = multinomial model

. e . o . d . .
2. any discrete distribution with an infinite support (e.g. Poisson) Z—--= multinomial model

N ~ binomial(np), JNip) = (N )=
more generally

|
(Nla"' 7Nk) ~ mlﬂtinomial(n;pla“‘ ;pk)ak > 27 f(va' o aNk;pla"' 7pk) = nipf/l kaYk
Nl N, /

where Zle pi =1, Zle N; = n, and the model can be interpreted as tossing n balls into k£ urns. Also
var (N;) = np; (1 — p;)
cov (Ni, Nj) = —npipj, i # ]
hint: to prove the covariance, we can write N; = ;' Mj; where Mj,; means toss k-th ball into i-th urn.
* Continuous IID case: skipped (nothing very important here)
* Connection Between Discrete and Continuous Likelihoods:2h-method
1. basic formula for continuous variable:

fl) = tim DWW —Fly=h) o POEW—hy+h])

h—0+ 2h h—0+ 2h

2. bivariate data with both X and Y being continuous

Ixy(z,y) (2n)*{Fxy(x+h,y+h)— Fxy(z —h,y+h)

- i,

—Fxy(x+hy—h)+Fxy(®—hy—h)

P(X e(x—h,a+h],Y € (y—h,y+h])
h—0+ (2h)2




3. bivaraite data with X discrete and Y continuous

1 P(XE(x—h,x+h],Y€(y—h,y+h])_ P(sz,YE(y—h,y+h])
fxy(zy) = hlg&r 5h = hlg& 5

note: it is 2h in the denominator
The likelihood based on the 2h-method can be summarized as follows

(a) for continuous case

LO]Y)= Hfm,e

n

YTty F i+ 150) = F(Yi = 1:0)
h—0+ 2h

i=1
n

= lim (;,l) [P i+ 1:0) = F (Y~ s 0)}

(b) for discrete case

1 FY h; 0 Yh@
hﬂ{;H{ +h:6) -

—F(Y7;0)}

i ::: I :::

f(Yi;0)

L(‘9 |Y)

(c¢) for combination of continuous and discrete random variables
1 m n
LO|Y)= 1 — F; (Y; + h;0 Y; —h:0
©01%)= i (55) 11RO 0 - R 07 r0)
where 1 < m < n depends on the number of continuous components in the data.

2.3 Proportional likelihoods

Likelihoods are equivalent if they are proportional and the constant of proportionality does not depend on
unknown parameters.

¢ transformation of variables
Y1, Y, ~ did fy(y;0)

we’d like to focus on transformed data X; = g (), ¢g(-) known, increasing, and continuously differen-
tiable
x(2:0) = fy{h(z);0}1'(x), h()=g7'(
L(O|X) = 0|YHh’ 0|YH
i=1

N

g/

note that [, 7 (Y) is constant, thus the estimate of # will be the same

* sufficient statistic e.g., Y3,--- , Y, iid Bernoulli(p)
Lip|Y) = Hp Y= pS(1-p) S
for S =37 | Y;, which is a sufficient statistic
Lo 18)= () r1-0" x L] V)
* different sampling plans

the above two examples give the same sampling plan and data for the two likelihoods. Here we give an
example that different sampling plan leads to proportional likelihoods.

10



1. as in the sufficent statitic example

Yi,---,Y, i Bernoulli(p)

which leads to the first likelihood
12 _
Li(p| S) = ( s )ps(l—p)12 5

2. negative binomial: Y;’s are observed until 3 0’s appear, which leads to likelihood

Ly(p| S) = ( S§2 )ps(l—p)3

(it’s S + 2 cause the last observation must be 0)

the ratio is
(5)
S
NPT 198
Sray\ P
S
which depends on p except for S = 9. When S = 9, the MLE estimate for p will be the same but the

inference like hypothesis testing (p-value) is different cause null distribution in the two plans are
different

2.4 Empirical distribution function as an MLE

Vi, Y, ~iid F(y)

L(F|Y)= H{F Y; +h)— F(Y; —h)}
i=1

= H D;,, assuming no ties
=1

for the likelihood here we ignored the (2h)~™ factor and the p; ;, here needs to satisfy thatp; , > 0, ;| pin <
1. Obviously, the likelihood increases as p; , increases until it reaches that

n
Zpi,h =1
i=1

Thus use Lagrange multipliers, we solve for

log L (F'| Y) + A <szh - 1) = ZIOgPi,h + A (Zpi,h - 1)
i1 i=1

1=1

then 5 )
g _ +A=0, i=1,...,n
5Pi,h Pi,h
dg -
I\ ;P h
we can show that
Fh—)FEMP 1ZIY<y

therefore we take the MLE of F(y) as the empirical distribution function

n

Fan(y) = Fowe(y) = + 1 (¥ < 1)
i=1

11



2.5 Likelihoods for censored / truncated data

¢ fixed censoring (for censoring, we know exactly which individuals are censored) e.g. suppose we have

underlying random variable X ~ N(u, 02?) and we generate Y as follows
0 X<0
Y= { X X>0
0 y <0
F =
0={ i sy 150
then the likelihood is
Yi,---,Y, ~ iid

II <1>(—u/0)} [ II o 'elt¥i—w /o

3:Y; >0

.Y

L(M7U|Y)={

* truncation (unlike censoring, here we are unaware of the truncated individuals) e.g. suppose income

X ~ Fx(z; 0) and sample Y7, ...,Y, comes from incomes above L, (left truncated). Then

PY <y)=P(X<y|X>Lo)I(y> L)
_ P(X <y, X > L)
- P(X>L0) ° I(y>L0)
_ Fx(y;0) — Fx (Lo 09)
B 1 — Fx (Lo; 0)
 fx(y:0)
fY(y)—m

I(y > Lo)

I(y > L)

* random censoring: we have underlying random variables X and R (e.g. X: survival time, R: censoring

time) and X 1 R. What we observed is Y = min(X, R) and 6 = I(X < R) then
fro(y,6 =1) =fx(y:0) {1 — Fr(y)}
fra(y,0=0) ={1 - Fx(y;0)} fr(y)

LO1Y,8) =[] fx (¥i;0)" {1 = Fr (Yi)} x {1 = Fx (Y;;0)}' ™" fr (¥;)' ™

i=1
oc [] fx (¥i:0)” {1 — Fx (vi;0)}' "
i=1

if Fr(-) is noninformative of 6

proof: we can use the 2h-method to get the density in this case.

PYe(y—hy+h],d=1) Plxe(y—h,y+h),R>x)

;133% 2 = ,}E{}) °h

— lim JTI(I € (y—h,y+nh],r>z)fx(x)fr(r)dedr
- h—0 2h
iy WU > @) fr()]dr (@ € (y — by + h) fx (@)dwdr
- h—0 2h
i IO = Fr@)I (@ € (y = by + B]) fx (@) dadr

h—0 2h

VR Fp(a)) fa(z)de

= fim o { ;ff Pt [1— Fr(y)] f=(v)

2.6 Likelihoods for regression models
* normal linear model

T . iid 2
nzxiﬁ—"_eia i=1,---,n, 617"'7€HNN(0a0>

1. fixed design: 1, zo, ..., x, are known nonrandom p-vectors
n 2
L Yixiby) = D DR L
B0 it = (o) exp{ >

9]
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-~ -~ -1
Bure = Brs = (XTX) X"y
where X = (x1,+-,x,)" , Y = (V3,---,Y,)" and

n 2
~2 -1 _ 71
OMLE — I E = E ( - X; BMLE)
i=1

whereas n
aunbiased = (TL - p)_l Z /6\12
i=1
2. random design: {Y;,x;}._, i (Y, x) and marginally x ~ fx(x;7) then
L(B,o,7 |{Y;,x;}_,) = above xﬁf (xi;7) = (1)nexp —i (i - Xﬁf (x5
g 2y S =1 41 X (2l \/ﬂg — 20_2 X 17
* additive errors nonlinear model: it is very similar to 1 but with the following the modification

with function g known. Then

n
N 2
_ -1 T
UMLE—n Ee =n § (Yz‘—xiﬁMLE)
i=1

but the estimator for 8 tend to have no closed form and need to solve numerically.

* generalized linear model

Exponential family is of the following form:
b(6)

F(410.6) = eap {y@‘(@

where 6 is the canonical parameter, ¢ is the dispersion parameter, b(0) is the cumulative function (different
from cumulative generating function) and a(), b(), ¢() are known functions.

el

To fit into the regression framework, we have

Yyt — b (6;)

az(¢) +C(yi;¢)

log f (i; 0i, ¢) =
link function is ¢(.) such that
g(p) =x{B=pi=g"" (x/B) = 0: =b""{g7" (x/B)}
a special case of the link function is the canonical link
9 () =0:=x] B

in this setting the log-likelihood becomes

n ; —b(x

log L (8, | {Yi.xi}1,) Z{yx & )( ﬁ)+c<yi,¢>}
=1

IfY ~ f(y;0,¢) and ¢ is fixed, then

Property 1. E(Y) = b/'(0)
Property 2. Var(Y) = b"(6)a(¢)

Proof
We first prove that

and

13



y0 — b(0)

£(0) = log f(y;0,6) = e

+ c(y, 9)

B | gy 108 1(050.0)

— /{gelogf(y;@,gb)} f(y; 0, 0)dy
=/fma@@

under some regularity conditions 0

5 [ fwsb.01a =0

and

62
E [_892 log f(y; 0, ¢)}

- / £ (y:0,9) - f (50, 6) — [f'(y: 0, 9))”
fy;0.9)

[ rsnome [ [525]

__ (% / 1(5:0,0)dy + B [ [(log (56, 9)) }
=E {[(log f(y;9,¢))']2}

Then the score function for 0 is

} fy; 0, ¢)dy

Since E(U(#)) = 0, we have

Since E(U(#)) = 0, we have

L (oUe)\ (9% Var(Y)  b"(6) V) — (0
Var(U(e))_E( 5 ) = E( 507 )=> 20~ a(d) = Var(Y) = b"(0)a(o)

generalized linear mixed model (GLMM)

in this model we extend the canonical-link GLM to accommodate random effects
0, =x'B+2I'U, U~ fy(uv)

then the likelihood is

L(ﬁvd)vy | {Yviaxivzi}?:l) = H/fYHU (}/1 | uaXivziaIB7¢) fU(u;V)du
i=1

accelerated failure time model
logT =x"f+0e, T LR|x

usually e ~ N(0, 1)
the observed random variable is Y = min(7, R),d = I(T < R) then the likelihood is

s % 1-6;
LB | (ibxd ) < [ { 2 4. (w)} Lir (w>}
=1

g g

14



2.7 Marginal and conditional likelihoods

Suppose Y <= (W, V) and we have

{ 0, : parameter of interest 2
f>: nuisance parameter 3

fy (7;01,02) = fw,v (w,v;01,02)
= fwy (W | V;01,0z) fv (v;61,0,)
1. if fv (v;01,02) = fv (v;0), it is a marginal likelihood
2. if fwv (W | v;01,02) = fwv (W] v;01), it is a conditional likelihood

Let’s illustrate with an example
Neyman-Scott problem

Yy RN (wi0?) i=1, nj=1,2
0= (0%, ,un)T dimn + 1 (increases with sample size)

then we have

n 2
G = (2n) 1Y D (Vij — fline)’

i=1 j=1
_ n”! Z?:1 (Yo - Y )2
4
~2 o’ ~2 p 0>
E (o) = 5 = e~ 5 by WLLN

as we can see, consistency no longer exist for MLE in this case cause the number of parameters increases with
sample size. Then how to achieve consistency?

_ (Ya —Yi) o2
V= 7% N (0,07%)
(Y1 +Yio) 2

1. marginal likelihood

Lo | V)= ]2 (-2=)
o =||—exp|—
Pt} V2o P 202

_ 2
n 12?:1(5@'1_1/1')
2

n
~2 -1 2 _
OMMLE — T E Vi =

i=1

in this case, only V; needs to be identified. However, W; may provide a sense of information loss

2. conditional likelihood
the key for this approach is to identify sufficient statistic for nuisance parameter under the assumption
that the parameter of interest is known. In our case, T; = Y;; + Yio is sufficient for u; = (Yi1, Yi2) | T;

doesn’t depend on p;
Yo | T~ N (L o
il 7 9 ) 2

n T 2
GemLe =217 Z (Yil - ;)
i=1

_ n~! Z?:l (Ya - Y )2
2

Examplel: Logistic regression measurement error model

o _ exp(a+BX
P(Y =1| X) = (225005

W=X+U U~ N(0,0}) with 0} known

withU 1 Y and U L X, o7 is known

15



e data: (Y;,W;),i=1,---,n
» parameters of interest: «,
then
Yo, Wi |, B, X3)
_ep{VilatBX)} 1 {_(Wi - an}
1+ exp(a+ BX;) Voroy

1 1 (Wi + Yo} ) X X? w2
= X exp +aY; — —
V2roy 1 +exp (a+ 8X;) 20

W; + Yio?wﬂ or equivalently 7; = W; + (Y; — 1/2) JQUB is sufficient for X;, assuming o and 8 are known
(Sufficient statistic depends on the parameter of interest). Then

B N exp(()é+ﬂTi)
PY;=1|T;) = 1+ exp(a+ B8T)

and the conditional likelihood score is based on

Do my = fyi - ORI (L

d(a, B) Cltexp(a+pT)f\ T
and the score is
n T
S v i) ()
i=1 expla g C T =W (vi—1/2)02 8

Note: when taking the differentiation, 7; is treated as given but not as a function of g
Example2: exponential families with canonical parameter

f(y;01,02) = h(y) exp Z 0;W; + ZHQjVj — A(01,02) p = W | V ~ exponential family indexed by 6, only

J
Example3: conditional logistic regression

logit {P(YV; =1)} =x] B

T
Py, —1)— S XB)
14+ exp (xi ,8)
n T a2\ Yi n T
exp (x; B exp (2= Yix; B
LB1Y.X) = [ ( ; _ (X, T)
i=1 €Xp (Xi /6) [Tizy {1 +exp (Xi ,6')}
S, ;Y is sufficient for 8,7 = 1,--- ,p. If B is the parameter of interest then let W = T}, and

T, =
V=T, Tho-t1,Ths1, - ,Tp)T
c(Th, -+ ,Tp) exp (BrTk)
YoMy, Ty, u, Ty, -+, Tp) exp (Bru)
where P(W, V) = ¢(T1,--- ,Tp)exp (BiTi)and P(V) = > P(W, V) =>" c(T1, -+ ,Th—1,u, Tiq1,- - , Tp) exp (Bru)

P(W| V)=

2.8 MLE and information matrix

Recall that N
Onrp = argmax L(9 | Y)
£0) =1logL(6|Y)
if £(0) is continuously differentiable, then likelihood score
04(0)

8(6) =S(Y,0) = — - ={r(O)}

exists and Oy satisfies S (OMLE) = 0. Under most of the cases, O iS unique, or at least there is a principled

strategy for choosing a single solution from among the possibly multiple values. But there are also special

cases, for example
N —(y—n)
Y S = © L
Yi,oo Yo~ fy; ) { 0 otherwise

any 4 < min(Y;) leads to likelihood to be 0.
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Property 1. invariant property:

5MLE for0 — TyE =g <5MLE> for 7 = g(0)
Property 2. asymptotic normality: under regularity conditions

vn (éMLE _ 9) 4 N{0,1(0)7'}, asn— oo

where

How to estimate 1(0)?
1(9) has 2 components: I(.) and 6. It is a natural choice for using fyyg to estimate 6. But what about I(.)?

1. theoretical I(.) =1 (5MLE> is the MLE for I(#)(invariant property)

2. estimated I(.) version 1

I(Y.0)=n"" Zn: {—;,S(E,O)}

i=1

1 - 0
S g £ (v
i_l{ so0a™ 87 | )}

3. estimated I(.) version 2 (usually less efficient)

T(Y.0) =n"") s(v,,0)%

1 i @
=n" ; {Wlogf(m—;e)}
Note: when Y; are independent but not identically distributed. The f(.;0) = fi(.;0)
4. estimated I(.) version 1: (Y; are independent but not identically distributed)

(v,0) = iz{ 5% (0}

=1
Z{ aeaoT log f; <Yz,0>}

the according average expected information matrix (also called the average Fisher information matrix)

n

1(0) = E{I(Y,0)} Z { —log f; Y;,B} ZE[{ long(Y;,H)}{gglogﬂ(}ﬁ,@)H

=1

s.

in the i.i.d case I(0) = 1(9)

5. estimated I(.) version 2: (Y; are independent but not identically distributed)

T(v,0) Zsz (Y;,0) s, (Y;,0)"

i=1
I~ 0 )
= =33 S log £ (Vi3 0) b 4 o log fi (Yi: 6
"2 {aaT og fi ( )}{89 og fi ( )}
Actually, we discussed two types of information here
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1. the total information: )

Ir(6) = -F { 9006"

log L(6 | Y)}

2. the observed total information

2

(Y. 0) = =007

log L(6 | Y)

Example 1: N (p,0?)

log f(y; u,0) = constant — logo — 53 (y — u)z
(o

o= (3 )

more specifically

d 1, -w® y—n\"
7(0) = =1 ; =|—-——+
(0) = 55108 f(y; 1,0) ( e L
then ) )
_1y (y—p 1y =) y—p
var(l'(0)) = var(= + ( fi)z ) cov(=7 + =55, )
cov(—L1 + W Bl war(YR)
then by the results of normal moments we get the answer
Order Non-central moment Central moment
1 0
2 w4 o2 o?
3 1> + 3po? 0
4 u*t +6u%0% + 30% 30?
5 u’ +10p30? 4+ 15u0” 0
6 u® +15u% 02 + 45u%0% + 150° 1505
7 W+ 21p°0? +105u3 0% + 105u0° 0
8 uB +28u0? + 210ut0* + 4201205 + 1050° | 1050°
Example 2: recall for the normal error regression models
n 2
n 1 (}/1 - szﬂ)
L Vi, @}, = i
(ﬁa o ‘ { (2] xt}zzl) 21;[1 \/%O' eXp { 20_2
, 2
1 n n (-}/; _ w?ﬂ)
= exp{ — -~
( 2%0) P { ; 202
then )
Y, —
{=—logV2r —logo — (2721B)
g

it follows that

, ot ot (1 (Yi—alB)? al (Yi—a]B)
_(aa’aﬂ)_ 0’+ o3 ’ o2
and
1 g(Yimel8)" el (Yi—a[p)
E” — o2 o4 - o3

taking expectation and organize we get
- 1 ( XTX/n 0
o) =% (X0 )

then invert It(3,0) = nI(B3,0) we get
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Similarly, for Y; = g (x;, 8) + e;
1 ( GTG/n 0
(/37 )_ ( 0 2 )

o2

where [G];; = 9g (x;,8) /9B;
Example 3: GLM with canonical link (g (1;) = 0; = x1' 3)

¢> 2 a0)
o b” ( 5) 22 _ " var (Yi)X 5

= XTVX =nI(Y,B) = nI(8)

where V' = diag {Var (Y1) /a1 (¢)?, ..., Var (Y,,) /a,(¢)?}. In this special case, average Fisher information is
equal to average observed information (cause X7 VX is irrespective of Y). When & is unknown, the full
average Fisher information is
- XT'VX/n 0 >
1(8,¢) = =
o= (X

thus estimating ® does not increase the variability of 3 estimation asymptotically in canonical link GLM models.
Cause the diagonal of I(3, ¢) is 0 and therefore we have

However, in general

- _ 1 _ _ 1
( Ii1 Iy ) ! _ (111 - 1121221121) —I'Ty, (122 - 121[1111%2)
I2o (I — 121]1_11112)

I215, 10 >0 = (111 - 11212_21121)71 > It

which means that when adding parameters to a model, the diagonal elements of the inverse information
matrix are always no less than the corresponding elements of the simpler model unless I;5 = 0. This is called
variance inflation

2.8.1 Transformed and modeled parameters

If we have f(y; 0) where 6: b-dimensional and therefore Iy : b. We also have S:s-dimensional and s < b, § =
9(B) then

((B) = log f{y;g(B)}

9 9 98(8)
aﬁf(ﬁ) 59 108/ (4:9) oeats) OB
0
13(8) = { BN 1, g0 280
Example 1: in the normal setting, let 8 = (u,0)” and 8 = (p, 02) then
0
% = diag{1,1/(20)}

1 0 1 /10 1 0
0= (o 1100 )7 (0 2) (0 1760 )
1 /1 0
T2\ 0 1/(20?)
2.9 Methods for maximizing the likelihood

1. Profile likelihood: maximize in a sequential way and therefore achieve dimension reduction

maXL(Ol,OQ) = max L {017/9\2 (01)} y 0 (01) = arg maXL(Ol,OQ)

61,65 6, 6216,
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Example 1: Yy,--- , Y, S Gamma(a, )

L a=1,-y/B

Iy (ysa, B) ~T(a)ga’

o, B) = —nlogl'(a) — nalog B+ (o — 1)ZlogYi _ ZéYv

K3

0 _ona Y ~ S

afﬁf(a ﬂ)——?‘f' 52 :}ﬂ(a)—Y/Oé

Ha, B(a)} = —nlogl(a) — na(logY — loga)
+ (a— 1)ZlogYi — na

2. Newton methods o

0=S(0)~S <9<”>) + { 5550 B_GM} (9 _ 9<u>)
=S (9<”>) Iy (Y, 0<”>) (0 - 0<">)

o+ — 90) | 1. (Y’ 0@))—1 S (9<u>)

(a) start with initial value 0
(b) update from current 0" to obtain §*+1
(c) stop if HS (0("“)) or HO(”“) — 0™|| is sufficiently small. Otherwise keep updating

nd i n Third iteration

=]
=]
=
=]
=]
=

o

=]
o
=]

Score function

(5]
=]
Score function

é(ﬁ'l

al2)
B

Seore function

[=

=]
o
//Z.,
o
=}
o @]
=
ma
=]
w
=
=
=
=
=]
®
@

0.1 0.2 0.3 0.4 0.5 0.6

01 0.2 0.3 0.4 05 08 R . .
8

Figure 1: Newton-Raphson method (source)

If the first derivative is not well behaved in the neighborhood of a particular root, the method may
overshoot. To prevent overshooting: At each step, ensure improvement of 81 over 8) by repeatedly

halving the step size.
Under certain conditions, Newton methods have local quadratic convergence, which means that for some

c>0 )
o0 ] <] ]

proof: (although I am not totally agree with this proof)
0=5 (wur) =5 (6©) = Iz (Y,60)) (B — 00 + %S” (94) (Bure - 6)

1 S” (19(11)) ~ 2
w+y) - = \" ] _ )
3 77 (Y, 00)) (HMLE 0 )

Thus, the local quadratic convergence holds under the following conditions:

O — 0

e Ir(Y,60) # 0 in a neighborhood of O

* S”(0) is bounded
+ 9 is sufficiently close to fyyg (so that we can eliminate S ()

3. Fisher scoring: Iy (Y, 0(”)) in the above method replaced by its expectation I (0(”))
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4. One-step estimator: typically OyLe — 8 = O, (n=1/2) (from asymptotic normality). If one starts with
0” such that 0¥ — 8 = O, (n~'/?), then
0(1) — 5MLE = Op (nil)
under regularity conditions (by the local quadratic convergence property).

5. EM algorithm (nice reading): view observed data Y as incomplete, with Z missing. Write log joint
likelihood of “complete” data as {(0 | Y, Z)

(a) E step: calculate
Q (0, 0<V>,Y) = Ego {Lc(0|Y,2) | Y}
— [tcl0 1Y D (21Y.6%) dz

(b) maximize Q (0, 0", Y) with respect to 6 to obtain 8"

Example 1: 2-component mixtures

Vi, Ya % F(y;0) = pfi (y; i, 00) + (1= p) fo (y; 1o, 02)

where f;, f2 are normal densities
0= (/1’1;0—1’;“2;0—2727)T
0) => log{pfi (Yiip1,01) + (1 = p)f2 (Yii p12, 02) }
i=1
it’s hard to maximize directly. Therefore, turn to the EM algorithm

Y, =2ZX,+(1—-2Z;) X
X110, Xin < N(Ml,ﬂf)
i'isl N(IU’Q,US)

i

Y APERRIN /N tig Bernoulli(p)

join likelihood of complete data (Y, Z)
Le(01Y.2) = [[{pfs (Vi o)} x {(L = p)fo (Vi pay 02)} 7
i=1

lc(60Y,Z) = Z{Zz log f1 (Yi;pn,01) + (1= Z;)log fo (Yis 2, 02) +Z;logp+ (1 — Z;) log(1 —p) }
i=1

cause
ply,2=1)=pylz=1p(z=1)=pfi
= =0)p(z=0)=(1—-p)fa

¢ E-step

Q (07 0(”),Y) — g {Lc(0Y,Z) | Y}
_Z{ (v )Ingl (Yiipr,01) + <1*w§’/))10gf2 (Yi;N2702)+w'§U) logp + (1 (V))log( P)}

where

w) = By (Z: | Vi)
P f (Vi ol)
p™) fi (lfi;uﬁ”)70§")) (L=p®™) f (Yz,u(”) (”))
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substituting normal densities

) (v) (Y; — m)?
Q(O,G ,Y): w, —logal—T

7=

v Yvi_ 2
+ (17105 )) {logag - (2052)}
2

+w£”) logp + (1 - w§U)> log(1 —p)}

+ const.

3

* M-step: maximizing Q (0, 0w, Y) is simple. When the “complete” data likelihood has the form of
an exponential family, M-step is straightforward.

Example 2: right-censored data
Let (Yl,él) Sttty (Yn, 5n) be i.i.d where Y; = min (X“ Rl) and 51 =1 (Xl < Rz)

Xi~ f(x;0) = o exp(—z/0)

L(O]Y,8) x f[fm;or” {(1-F(v;0)}"

T exp< ZY/U)

cause F'(Y;; ) =1 — exp(—x/0), where n,, is the number of uncensored observations. The likelihood is
easy to maximize. Nonetheless, let Z; = X;

L0]Y,0,X)= Xn:logf (X;;0)

n

=Y log f(X;;0)+ Y logf(X::6)
=1

=N, +1

¢ E-step
Q(6.6",Y,5) = Zlogf Vio)+ S By flogf (Xi56) | Yid)

1=nqy+1

:—nlogo—oflei —o! Z E,(X;| X;>Y)

i=1 =M +1

=—nlogo —o ! ZYi — o (n—mny) oW
i=1
things are simplied here by assuming R; is not random
* M-step

O_(l/+1 — {ZY+ nu ()}

as v — 0o, we expect 0“1 — Gy g and 0*) — Gypp thus

omLe =n" ! {ZYZ +(n— nu)aMLE} —> OMLE = ZYz/nu

i=1 i=1

2.9.1 Why does EM work?

* Jensen’s inequality: for a random variable X and convex function ¢(-), Y{E(X)} < E{y(X)}

e for Y ~ f(y;00),Eg,{log f(Y;0)} is maximized at § = 6, proof: ¢ (z) = —log(x) is a convex
function for x € (0, 00). Therefore, by Jensen’s inequality

o {0 < {50
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note that

Eg{ Y@O} /fyoo (Y;00)dy = 1

therefore the left side is O

f(;0) Y 90

Ey, |1 | > Ep, |1
94%{ﬂnm el
= FEy, [log f(Y;0)] < Ey, [log f (Y;6p)] = Ego{log f(Y;60)} is maximized at 8 = 0
* now go back to the EM algorithm

(O]Y)=log f(Y|0)=log f(Y,Z]6)—log f(Z]Y,0)
cause f(y,z;0) = f(z | y;0)f(y;0). Taking expectation on both sides treating Z as a random
variable with density f (Z Y, 0(”))

66 1Y)=Q(6,6%),Y) ~ Eger{log f(Z | Y,0) | Y}

where based on the previous step E,){log f(Z | Y,0) | Y} is maximized at 8. In performing
the EM algorithm, we ensure that (0, 0(”),Y) >Q ( 6™ 0"y ) by maximizing Q (0 o) Y).
Therefore ¢ (0(”+1) | Y) >/ (0(”) | Y).

2.9.2 Calculating observed info matrix after EM

The general way is

0 _ (Y 0)
Sy(Y,0)= —=1o Y:0)="F——"——
2
Iv(Y,6 lo Y;0
v(Y,0) = ~ 50507 g fy(Y;0)
1
Y(Y 0) ®2
+Sy(Y,6
~ fx(Y;0) ¥(Y.6)
Actually, there is a better way than direct computation. Note for the complete data fy z(y, z; )
fv2(Y,Z;0)"
S Y,Z,0)=—""———"—
vl B0 =T N 70) -
1 .
Iy z(Y,Z,0) = ,M + Sy .z(Y,Z,0)%2
e fx.z(y;0) o

given that the complete density is related to the density we are interested in, we have and based on 4 we
have
0) = [ fraly.z0)ds

0
Sy(Y,0) = %ﬁlog /fyyz(Y,z;O)dz

[y 2 (Y,2:0)" dz

[ fx.z(Y,2;0)dz

_ [Svy.z(Y,2,0)fy z(Y,20)dz
[ fv.z(Y,z;0)dz

:Eo{SYz(Y 7,0)| Y}

Iy(Y,0) = 8089T log/fy z(Y,z;0)dz
[ 14 2(Y,2;0)dz
= ffy,z(Y,Z,e)dZ + Sy (Y,0)%?
=FEe {Iy z(Y,Z,0) | Y}
— Eo{Svy,z(Y,Z,6)%* | Y}
+ Sy (Y, 0)%?
where /I\Y7z and Zy z only need to be computed at the last iteration of the EM procedure where
Sy(Y,0) =0.
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2.10 Uniqueness of MLE

Converge to boundary: sequence ), 6® ... in © is said to converge to boundary 90 if for every compact set
(If a closed set A is bounded, then A is a compact set) K C O, there exists ky > 1 such that o) ¢ K Vk >k

(if © = RY, then this definition is equivalent to limy,_, o o) ‘ = 00)

Constant on boundary: a real-valued function f defined on © is said to be constant on boundary 96
if img_yo0 f (H(k)) = ¢ for every sequence ) in © converging to 90; ¢ could be +oo. Written as
limQHQQ f(@) = C.

Theorem 2.1. for © C R b > 1 which is a connected open set. If

1. £(0) is twice continuously differentiable with limg_, 5 £(0) = ¢, where constant c is either a real number or
—00

2. I7(Y,0) = —9%0(8)/9000" (observed total information matrix) is positive definite at every point 8 € ©
for which 94(68)/00" =0

then
1. the critical point is unique and is the MLE
2. 4(0) >c, VO €O

Recall: Note a matrix A is positive definite if x” Ax > 0, Vz. A is positive definite if and only if

ail a2 ais
>0;| as1 a2 a3 | >0;---;]A >0
azy as2 ass3

a1l a2

aip > 0;
"| a1 ag

Note: the constancy on boundary is not really necessary for the scalar parameter but is need for other cases

» with a scalar parameter, the second conditional that minus Hessian is positive definite at all stationary
points (z at which f’(x) = 0) = absence of local minima = absence of multiple local maxima (multiple
local maxima cannot occur without local minima)

* counter-example showing the necessity of “constancy on boundary”

{=g(z,y) = —e % —e Ysinx
x,y) = —e Ycosx
z,y) =2 % + e Ysinx

solution: z = (2k + 1.5)7,k=1,2,---, and y = log2

_vzg(x y) = —e Ysinx —e Ycosx
’ —eYcosx 4e W +e Vsina

at stationary points 0.5 0
o 0 0.5

which is positive definite = all solutions corresponding to maxima, which is the solutions are all maxima
and there are countably infinite of them cause the “constancy on boundary” is violated

Theorem 2.2. for © C R b > 1 which is a connected open set and {(8) is twice continuously differentiable. if
1. 0(0)/06™ = 0 has at least one solution
2. Ip(Y,0) is positive definite V0 € ©
then
1. £(0) is concave
2. the solution is unique and is the MLE

Example 1: normal location-scale model

Y, 7Y"~iidN(pJ,02),@:(foo,oo) x (0, 00)
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n

1 2
l(u,0) = const —nlogo — @Z(Yi — )

=1
9 o7 i (Yi— p) )
14 yO) = o l_ln ‘
o7 11:7) ( —2 4 i (Vi p)?
> & 2 (Yi—p)
(1 0) %21:1 (Yi — ) _P+%Z¢:1 (Yi_/v‘)2

only solution to 9/(u,)/00" is i = Y,G = s,,. Use 2.1 we can show that 1) Ir (Y, s,) = diag (n/s2,2n/s2)
is positive definite, and 2) limg_,20 £(0) = —co (HW3 2.58) B
2.2 is not applicable cause Iy (x, o) is not positive definite everywhere. Iy (p,0)| = n?07% {3s2 — 0 — (Y — p)?}
could be negative.
Example 2: Exponential threshold model (combine with the profile likelihood approach)

y— K
o

1
f(y;u,o)aexp< ) p<y<oo

with Y/s are i.i.d and © = (—o00, 00) x (0, 0)

L(p, o | Y) =0""exp (—ZYiO_u> [17 <y

=1

which is not differentiable in 1 everywhere. By using the profile likelihood method. For each o, L(u,0 | Y) is
maximized at /i = Y(;) = log-profile likelihood ¢*(¢) = —nlogo — o1 3, (V; — V(1))

0 . o o
550 () = —no "t +noe P (Y = Yy)) =5=Y - Y, if Y > Y,
o ) .
—@E*(U) =—no?+2n0° (Y = Y))

is not always positive thus 2.2 does not apply. Nonetheless, 2.1 does
1. —0%t*(a)/ 8(72|U:a =no2>0
2. limgy 0 0*(0) = limy—y 00 £*(0) = —00
Example 3: example to show that existence and uniqueness of the MLE is not always a given

%

id .
Yy, -+, Y, "~ mixture of normals

f(ysp,0,p) = pply — p) + (1 —p)lcb (y — M)

(o g

the log-likelihood assuming i = Y

{ =log {p¢>(0) +(1 —p)i(ﬁ(O)} +2n:1°g {p‘b(yi -Y)+a _p)§¢ (Y_Yl)}

- g
=2

as ¢ — 0 the first term — oo and the rest are bounded. Thus, MLE does not exist in the strict sense.
Furthermore, there exist multiple local maxima.

Nonetheless, local maxima satisfying the likelihood score tend to behave well. EM algorithm can find at least
one of them.

Uniqueness of the MLE for exponential family

X ~ minimal exponential family

s k
£(x:60) = h(z) exp {nge)mx) - B<0>} — h(z)exp {mem - A(n)}
i=1 i=1

where ¢(0) is 1-to-1, twice differentiable in © and © is an open subset of R®. Then if there is at least one
solution to the transformed likelihood equation Eg{T(X)} = T(z) then with 2.2 the solution is unique and is
the MLE.

With the canonical representation, the likelihood score is

U An) = B, T(X) = T(@)
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the minus Hessian is )
0

G A = 10m) = Var, (T(X))

which is positive definite as T is affinely independent. Then based on invariant property so is Oy =
9" (M)
Families with truncation or threshold parameters

i.4.d

Ly, 3T ™ f(SC;O,,LLl,,LLQ)

f (230, 1, p2) = c(pa, po, 0)d(z,0) iy <z < iz
for fixed 0, (X(1), X(,)) is minial sufficent for (u1,u2). Conditional on (X (1), X(n)) = (2(1),%(n)), sample
values between Xy and X, say

ivi.d d(z,0)1 (x(l) <z< x(”))
21,0, By~ q(,?,’7 0) = f-'li(n) d(z H)dz
T (1) ’

if d(x, @) has an exponential family form then so does ¢(z, 6)

Similar results for
f(z:0,p) = c1(p, 0)di(2,0) p<z
f(#;0,1) = cap,0)da(2,0) < p

Example 1:
f(a;0,p) = 0“1 (1 < )

conditional on X,y = x(;), observations larger than z(;) have density

q(z,0) = fe 0=z T (za) < 2) = e~ 00z Hlog(6) 1 (1) < 2)

3 Likelihood-based tests and confidence regions
Let’s first look at the simplest scalar parameter case
H029:90VS. Halg#eo

* Wald test )
(gMLE - 90)

{r () }_1

Tig = —2 {e (60) — ¢ (éMLE) }

Ty =
¢ Likelihood ratio test

* Score test
_ S(6)’
57 Ir ()
Under H,, asymptotically they are all x?. Under local alternatives, they have identical asymptotic
non-central x? distribution.

The idea behind those tests are graphically illustrated below
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Figure 2: Graphical representation of the relationships between Wald, Score and Likelihood Ratio test statistics

Log likelihood

g_\ILE 9[]

Parameter 6

The Likelihood Ratio test statistic is a multiple of the difference,A;; the Wald test statistic is a multiple of the
squared difference, A2; and the Score test statistic is a multiple of the squared slope 32 (this figure is from the
textbook)

3.1 Simple null hypothesis

By ”simple” we mean don’t have nuisance parameter which is we are interested in the whole parameter vector.
Hy:0=0yvs. H, : 0 # 60y b-dimensional
* Wald test .
Tw = (/éMLE - 90) It (EMLE) <§MLE - 90)
where It (EMLE) may be replace by It (6) or It (Y, EMLE)

* Likelihood ratio test
Tip = —2 {z (80) — ¢ (éMLE)}

By taylor expansion
£(80) = £ (Ouig)+S (éMLE)T (60 — B —% (60 - éMLE)T It (Y, 8uee ) (60 — Buiws )+ residual
here S <5MLE>T = 0 cause this is how MLE is derived. Therefore

Tw + 0, with §,, = 0
where §,, is the residual

e Score test
Ts =S (80)" It (85) " S (8y)

Under Hy, E{S(6y)} = 0 and var {S (6y)} = It (0y). By central limit theorem and continuous mapping
theorem T % 2.
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Example 1:

In(Y, p) = —TLS(M) =n
we got the test statistics as follows

Ty = (¥ = o) (n) (¥ = o) = (¥ — po)*

Is = {Z(Yz —Ho)}”_l {Z(Yz —Mo)} =Tw

% 4

TLRZ—Q{_;Z(YQ‘—MO)Z‘F;Z(Yi_yf}:TW

K2 7

Example 2: Y1, ,Y,, % Bernoulli(p). Hy : p = py. Let X = Y, V;

L= pri(l _ p)(lfyz‘)
i=1

n

0= Zy log(p) + (1 — y;) log(1 — p) = X log(p) + (n — X)log(1 — p)

X n-—-X X —np X
S = — — = :> :—:}X:nA
(®) p 1-p p(l-p) P= r
X n—X n
ItnY,p)=—+———-— I =
Yop =ty 0= aTy
~ n ~ 71(1’5—1170)2
Tw=(p— == P — = —=
WP G P = G
~ 2
Ts = S (po) Ir (po) " (o) = “P=P2)_ x i replaced by np
po (1 — po)

Tir = —2[Xlog (po/p) + (n — X)log {(1 —po) /(1 = P)}]

3.2 Composite null hypothesis

In this case, 0 is partitioned and we are only interested in part of it.

0,

rx1

bgli 92
b-r)yx1

Hy:0, =019 vs. H, : 8, # 01y, with 05 as nuisance.
e Wald test

~ ~ Iry T
Ir <0MLE> =Tp = D T2
Ito1 Iroe

Under Hy, Avar (@1 — 010) is the upper (1,1) element of T; ! given by

~ ~ ~ ~ -1
1
(IT,ll — IT,12IT’221T,21)

therefore .
~ ~ & s ~ d
Tw = (91 - 6’10) (IT,11 - IT,121T,1221T,21) (91 - 6’10) S X7

be careful here, don’t write the middle part as (TT,H)_l
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¢ Likelihood ratio test
SUPgc H, LO]Y)
SUDPgco LO|Y)

Ti = ~210g | b= -206®) - @)

where supge 7, L(6 | Y) is the restricted MLE and supgcg L(6 | Y) is the unrestricted MLE

* Score test
First derive the Hy-restricted MLE

~ 0 3
9— < 710 > 02 = arg max { (9107 02)
0> o2

It (éMLE) =1Ir

S2(0) %5(0)
Ts = S(0)"1:'S(6)
~ ~ -1 ~
T I I S,(6)
_ 0 T drar Iraz 1
(Sl( ) 0 ) < It2r It 0
NS S~ - -1
=81(0) (Tran — Traelpholre:)  S1(9)
where S,(8) = 0 by definition of MLE

Composite null hypotheses of general form H; : h(6) =0

rx1
H(9) = ﬁh(e) <b
ST R A

which needs to be of full rank
Below are some examples to help understand the definition of h and H Example 1: bi-variate normal data

0 = (u1, p12,01,09,p)"
Ho :pn = po
h(0) =p1 — p2
H(6) = (1, -1,0,0,0)

Example 2: linear hypotheses K”' 3 = m
h(8) =K"f —m
Example 3: partitioned-vector hypothesis Hy : 81 = 61
h(6) =6, — 04
Now let’s jump in to the test statistics

* Wald test N
6 ~ AN (0,17(0)"")

h(6) ~ AN {h(6), H(6)I1(6) 'H(0)" }
T = 1(@)" {HEOLG) " HE"} 1)

from the first line to second line we used Delta method one problem is that the test statistic varies with
reparameterization and choice of h, e.g., h (11, u2) = p1 — po and h (1, p2) = p1 /2 — 1.

* Score test o _
Ts = S(0)T1;:'S(0)

where 6 maximizes the likelihood subject to h(8) = 0.
Actually a better way to do this is using the Lagrange multiplier for

max £(0) subject to h(8) =0
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we will focus on £(6) — h(8)X, ;X\
S(O)-H(O®)"Xx=0
h(6) = 0

Denote the solution by 6 and A then we get S(6) = H(8)” X and the score test statistic turns into

Ts = X H(9)I-'H(@)T A

Below is a comparison of the three method
invariant to re-parameterization and the choice of h(-) computing MLE’s

unrestricted restricted
Wald N Y N
Score Y N Y
LR Y Y Y

Nonetheless, LR can be convenient for nested models. Typically, Wald does not have as good type I error as
score and LR. And Wald and score are easier to adjust in the case of model misspecification.

Example 1: Normal location-scale model Y;,--- Y, KN (/.L,O’Q) and Hy: p=po Vvs. Hy:pu#p o
unrestricted

1
{(p,0) = constant — nlogo — 357 Z (Y; — p)®

o2 (Y; — _ _ 9
S(u,0) = Z l - (Yi(— mzu_) 02} ] =nu=Y *=s=n" Z (Vi =Y)", In(u,0) = diag (n/o”,2n/0?)

Tw= (Y - )E({/, )771(}7—;40)27 i n(Y_MO)Qf i t?> where ¢t means t-distribution with df = 1
v Ho s2 Ho) = S n—1ns2/(n—1) n-1 N

2

1 52 )1 n (Y — po) nTw
Ts = =5 Y;* - =5 ijf = — =
S {02 ( Mo)} n {02 EZ ( uo)} 52 n+ Tw
~92 1_/_ 2 T
TLR:nlogZ:nlog{l+(2MO)}:nlog{1+W}
o s n

Since Lf_—r <log(l+z)<zforxz>-1

Ts <Tir <Tw

Using exact distributions, they are all equivalent to ¢ test (can be transformed to t test). Using the asymptotic
X7 critical values, Tyy is more liberal.
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Example 2: Score test for multinomial data = Pearson x? test

(va"' 7N/<) ~ Multinomial(n7p17”' 7pk)
' opk=l-pi— = pa
n!

P= (pla"' s Pk—1

e — " gk
f(nla 7nk) n1!~-~nk!p1 pk

k-1 k—1
{(p) =Y _ Nilogp; + Ny log <1 - Zpi> + const.

i=1 =1

s = (N M N N)
P1 Dk Pk—1 Dk
. 1 1 n 92
IT(p):ndlag Ty +—1
b1 Pr—1 Px

Ir(p)~" = {diag(p) — p**} /n
Ts =S(p)" Ir(p) " 'S(P)

k 2
N;  Ng\~ -
Z’I”L_l E (J—f) Di

= \Pi Dk

/N, N ’
—ﬂ_l (J-f)j

o1 (D Pk Pk
_ Z (Ni - npz)
i=1 npi

in the last step, the variance equality

Z azzpi — (Z aipi)Q = Z (ai — Z al-pi>2pi is used.

Example 3: Testing for Hardy-Weinberg equilibrium
Multinomial £ = 3 : paa, PAa, Paa
Under the equilibrium, pas = p%,paa = 2pa (1 — pa),

Paa = (1 - pA)2
restricted MLE: p4 = (2Naa + Naa) /(2n)

2 _ _
(Naa —np?) N {Naa — 2npa (1—pa)}’
np4 2npa (1 —pa)
2
{Naa —-n (1 _514)2}
n(l—pa)

Tg =

+

the degree of freedom is 1 cause

h(PAAvPAa):PAa*QPj‘{f(1*]'_’%3):>7":1

3.3 Confidence interval

0,
rx1

bx1 02
(b—r)x1

T (0,) = test stat with 6, as the null value (actually the true value)
Croa={01:T(61) < x7(1-a)}

Asymptotically, (random) confidence region contains the true parameter value ;9 with probability 1 — « if 81
is the true value. If 61 ¢ C;_,, then we reject the null hypothesis

P(010 S Cl—a) =P {T (910) < X?(l — Oé)}
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Example 1: Binomial model

~ 2
We previously derived the test statistics for the binomial model as Ty = “2=2)

e
nP-p? _ » 2 =~ p(l—-p) - p(1 —p)

Tw = < 1- = ~ Al-a ’ —a

W= Sy <M= = P s\ T P ey T

3.4 Nonstandard hypothesis testing problems

the solving

If H001Y)], 5.,
3 likelihood-based tests do not have a limiting x2 null distribution. Example 1: Exponential threshold model

- —(y—mn) >
Vi ¥, B =1 y>p
! Flyim) 0 otherwise

. = 0 in probability, typically the asymptotic normality of @y is no longer true and the

and the MLE is zivLe = Y{1). In this case, the score equation is not 0.
Null hypotheses on the boundary of the parameter space

Vi Y B ON(u 1) p> o

[MLE = max (Y» M())

Ho:p=po vs. Hg:p>po

Tw = n (fmee — fo)”

— 2 —
_ n(Y —po)” Y >po
0 otherwise

Ts=n(Y - ,u0)2 ~ x? under H,

Tir =Tw
When a null hypothesis value, say 6 lies on the boundary of the parameter space, then maximum likelihood
estimators are often truncated at that boundary because by definitionb 6y, must lie in the parameter space
of 6. Thus 6y equal to the boundary value 8, with positive probability and correspondingly T zero for
those cases. The result is that the limiting distribution of Ty is a mixture of a point mass at zero and a
chi-squared distribution.

In this case, Y used to be greater than y, with probability % Therefore Ty, or T1r has a null distribution that
is an equal mixture of a point mass at 0 and a x? :

Z?1(Z >0), Z~N(0,1)
with this modified limiting distribution. The confidence interval shall be modified accordingly: level- « test:
reject Hy with critical value being 1 — 2a quantile of x?
P{Z*I(Z>0) > xi(1—2a)} = P{Z* > xi(1 —2a),Z > 0}
1
= 5P{Z2 >xi(l-2a)} =«

Although the score test statistics still follows the chi-square distribution. By following standard approach we

can reject if
YV <o —/xi(@)/norY > o+ 4/x3(a)/n

however, the Y < 1o — v/x3(a)/n part doesn’t make sense cause the parameter space is [0, co) thus a natural
solution is to reject when /n (Y — 119) > 2q

For cases that are not in the same form as this example, we can try to transfer the test statistics to be like that
in this example.

Example 2: Isotonic regression

There are k independent normal samples of size nq, - - - , ng, each i.i.d with means p1, - - - , 1, respectively, and
common variance o2, satisfying

pr < g < < g
The MLE minimizes >, n; (Vi — ui)Q subject to pu; < po < -+ < pg-. We'd like to test

Ho: pi=--=p
H,: pp <--- < pug with at least 1 strict inequality
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we can reparameterize as
M1
Apg = pg — 11

Apg = pg — pr—1
Then, this results in null hypothesis on the boundary:

Hy: Apo=---=Aur=0
H,: App >0, -, Ay > 0 with at least 1 strict inequality

4 Bayesian methods

* this part will not be tested
* this part of the note is combined with notes from BIS 567 Bayesian Statistics at Yale to enhance understanding

4.1 Introduction

* Frequentist approach

— the unknown parameter 6 is assume to be constant
- data’Y ~ f(y;0) is considered random

— estimation can be via MLE, M-estimation, ...

- hypothesis testing can be likelihood-based,...

- confidence interval is derived by inverting a test statistic
* Bayesian approach

- the unknown parameter 6 is from 6 ~ 7(8), the prior distribution
- dataisfromY ~ f(y | 9)

— estimation is via the posterior density

fly | 6)m(6)

TN =)= Try To)n(0)d0

point estimation can use ,e.g., posterior mean

— 1 — «a credible region: parameter space with posterior probability 1 — «

Marginal density (prior predictive density) of Y
Yonly) = [ 7y | 0)n(6)do
Posterior predictive density
Wi | Y) = [ £ (e |6.)7(6 | V)0
= /f (Vnew | 0) m(0 ] Y)dO when Yyew Y

Where does the prior 7(6) come from?
* Subjective Bayesian: personal uncertainty about 6

* From previous knowledge: previous information about 6 (Bayesian analysis is used to combine previous
info with current data)

* For convenience: convenient technical density to employ the Bayesian machinery
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Example 1: Y ~ binomial(n;p)

f(y|p>—<;)py<1p>”y y=0,1,.n
i) = W?‘“‘lﬂ — )" (Beta)

mw) = [ 1| pn(pap = P VD) ( n)

B(Oz7 6) Y
n n— T'(a+B) . a—1 B—1
pY(L—p)"¥- p 1-p
v _ fwlp@) _ ( p ) (=P Far?” (1 =p)
T(p|Y) = -
m(y) m(y)
(Y s
SR ~beta(Y + a,n —Y + j)
m(y)
the posterior mean is
Y+a atf n Y

E Y = = J—
(PY) a+p+n a+B+na+pf a+B+nn

which shrinks the MLE toward prior mean. Bayesian estimator may have smaller MSE than the MLE.
When « = 3 = 0, the prior is improper

— posterior beta (Y,n —Y') is proper if 1 <Y < n — 1 = posterior mean Y/n

Example 2: Normal (6, %)
Yi,---.Y, 4 N (0,0%) o3 known

prior 6 ~ N (pg,05)  po, o known

Topo + Y 1 )
To+Tn | To+ T

posteriorf | Y ~ N <

where precisions 7o = 1/03 and 7, = n/o?
95% credible interval

(Touo + 7Y 1.96  7opo + 1Y 1.96 >

+
To+ Tn \/7—O+Tn’ To+ Tn VTO+Tn

A nice feature of independent data is that one can sequentially update the prior for each additional datum, or
all at once. For example, suppose Y7, ...,Y,, are independent with respective densities f; (y; | 0),i=1,...,n

Then, the posterior is
m(O) 1=y fi (Vi | 0)

J (@), fi (Yi | 0)do
@YD, £ (Yi16)
Jm (@Y, fi (Yi | 0)do
m (0| Y1,.. Yi) [[iyp fi (Yi ] 6)
@Y, Y [T fi (Yi | 0)do
Here 7 (6 | Y1) is the posterior from using the prior and Y;. It then is used as the prior for the remaining data.
Sufficient statistics often make calculations easier. Because of the factorization theorem, if a sufficient statistic

for 6 exists, then the posterior depends on the data only through the sufficient statistic.
Estimation and inference: Frequentist uses sampling distribution, whereas Bayesian uses posterior density.

70]Y) =

4.2 Bayesian estimator from decision theory perspective

Loss function L{60,6(Y)} : non-negative function of the true parameter and an estimator 6(Y). For example:
1. squared error loss: L{0,6(Y)} = [|6 — 6(Y)|?
2. absolute error loss: L{6,6(Y)} =10 — §(Y)|

0 if0=05(Y)

3. 0-1loss: L{0,8(Y)} = { 1 otherwise
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Risk: is the average loss over Y
R(6.8) = [ L{0.5)} (v | 0)dy

which is not a single number, but rather a function of # Several standard frequentist approaches regarding the
risk:

1. minimize R(0,§), with squared error loss, over the class of unbiased estimators = if exists, minimum
variance unbiased estimator (MVUE)

2. minimax estimator
inf sup R(0, §)
5 ¢

maximize the risk over 0 first then seek an estimator that minimizes the maximum risk

Bayesian approach (take another average over )
RBayes (7T, 6) = /R(O, 6)7r(0)d0

Bayesian estimator dpayes minimizes Rpayes (7, 0)
We can also minimize the posterior risk instead

plr,8(V)} = [ 1{6.5(Y)}(6 | Y)do
But typically arg min p{m, §(Y)} = arg min Rpayes (7, 8)

Riayes (m,8) = [[ 1{0,8(v)} (v | 0)m(0)dydo
=[] £46.6(v)}7(8 | y)m(y)dydo
— [ plr8)ymiv)dy
thus minimize p{7, §(Y)} usually minimize Rgayes (7, )
Different loss function leads to different parameter estimate
* squared error loss = posterior mean
* absolute error loss = posterior median
* 0-1 loss = posterior mode

Bayes estimators with proper priors are generally not unbiased in the frequentist sense. However, they typically
have good risk behavior in the frequentist sense. Interestingly, a key technique for finding minimax estimators
starts with a Bayes estimator (see Lehmann and Casella, 1998, Ch. 5). Moreover, an admissible estimator (an
estimator not uniformly larger in risk compared to any other estimator) must be a Bayes estimator or the limit
of Bayes estimators. Thus, Bayes estimators are not only good in terms of Bayes risk but are often of interest
to frequentists willing to sacrifice unbiasedness.

4.3 Credible intervals

1 — « credible interval/ region: a region of @ of posterior prob 1 — «
highest posterior density (HPD) region: the region with minimized volume
region with equal tail probability is often used for a scalar parameter

4.4 Conjugate prior

Conjugate prior: when the data Y has density f(y | ) and the prior and posterior are from the same family of
densities, we say that the prior is conjugate.

7(0) governed by fixed hyperparameters

Yprior (0 | Y) has updated hyperparameters ~pos: , via @ known function of oy and Y

Some examples:

* beta(a, ) prior for binomial (n,p) data

* N (po,03) prior for N (8,0%) data (known o%)
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* beta(a, ) prior for negative binomial data
* gamma prior for Poisson data
* gamma prior for gamma data

* Pareto prior for Uniform (0, #) data

Example 1:
Y ~ multinomial (n;py,- -, pr)
7 (p1,--- ,px) ~ Dirichlet (g, - - , a.)
ko ai—1 k
i=1Pi i=1 I (ai
m(p) = Hli’ B(a) = M
B(a) r(sho)

k k
| Y) o [ oM [ p !
=1 =1

= 7(p | Y) ~ Dirichlet (ay + Ny, -, ax + Ny)

Any data density having a sufficient statistic of fixed dimension Vn has a conjugate prior.
Example 2: exponential family canonical form

f(ysm) = h(y)exp {wa - A(n)}

conjugate 7(n | v, A) = K (v, A) exp {Z%m - AA(??)}

i=1
posterior ~ 7w(n | v+ T(y),A+ 1)

4.5 Noninformative prior

Truly noninformative may not be possible. For example, assigning prior probability to events A, B, and
C = C71 U (5. The choice between the following two cases reflects some kind of information

P(A) = P(B) = P(C) = 1/3 or
P(A) = P(B) = P(C,) = P(Cy) = 1/47

For the case of a location parameter p taking values on (—oo,c0) : improper prior 7(u) = 1 giving equal
weight to all values can be justified on a variety of grounds. An improper prior does not have a finite integral.
However, there seems to be no philosophical problem with improper priors as long as they lead to proper
posteriors.

For the case of a scale parameter o taking values in (0, c0) : Jeffreys’ suggestion n(c) = 1/0 which has an
invariance argument. . His invariance argument is that any power transformation of o, say v = ¢ has via a
change-of-variables, the improper density

1
,yl/a

,yl/a—l

=0t = ) = 7z [

which is similar in form to 1/0
Combining these last two improper priors, a location-scale family with (i, o) € (—o0,00) x (0, 00), suggests
using the improper prior
1
m(p, o) .
Now, moving to the case of general parameters on continuous parameter spaces. For Jeffreys prior

e Scalar parameter 7(#) o I()'/2. For transformed parameter v = g(f),

g ) = 1)

o Y

Example 1: for binomial(n, p). I(p) = n/{p(1 —p)}

m(p) o< {p(1 — p)} /% ~ beta(1/2,1/2)

m(7)
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e Vector parameter 7(0) o |I(@)|'/?; | - | is determinant
Example 1: for multinomial(n; p1,- -, pk)

Ir(p) = n {diag (1/p1,- - ,1/pr—1) + 117 /pi }

1
m(p) « ——— ~ Dirichlet(1/2,---,1/2)
b1---DPk
For N (u,0?) case with 6 = (u,0),1(8) = diag (072,2072) = 7w(p,0) x o2 which is different from ¢~*
given earlier. Thus, Jeffreys modified his original proposal in the presence of location parameters say p1, . . ., g
to

m (/1“17 cee 7Mk>0) o ‘I(0>‘1/2

where s are held as fixed.
4.6 Normal data examples
4.6.1 One sample with unknown mean and variance

Data: Vy,---,Y, N N (1,0?),0 = (u,7 = 1/0?) unknown

Prior: 7(u | 7) ~ N (uo, (mo)*l)

7(7) ~ gamma (ag, 1/6p) , mean = ag/Bo
a rough way to estimate the prior variance is treating 7 = /3y = prior variance of y ~ (8y/a0) ng *
1 ~ t with center g, scalee? = (/) /no, and df 2aq

then the likelihood is .
(2m0%) ™" exp {202 -7 +nr - u)Q}}

then the posterior is

!/
w7 | Y) o 72 exp {—m (u— u’)Q} o/ 1gm7h

2
,_noﬂo-ﬂﬂ_’
ng +n
n =ng+n
o =n/2+
—\ 2
ﬁ/=ﬁ0+w+% (n:(fn) (NO—Y)2

= u,7|Y~N (,u’, (Tn’)_1> x gamma (a’,1/") (conjugate prior)
1| Y ~ t with center /', scale e* = (8'/a’) /n’, and df2«/.
posterior predictive density
m(yn+1 | Yi,--- 7Yn) = /f(yn+1 | 0)71—(0 | Yi,--- 7Yn)d0
which is a ¢ distribution with mean 4/, scale e? = (8'/a’) (1 + 1/n'), and df = 2a/.
Letting avg — —1/2, 8y — 0, and ng — 0 s.t. (no/ﬂo)1/2 —1
= 7(u,7) — 1/7, an improper prior

= 1| Y ~t with mean Y, scale 2 = s2_, /n, and dfn — 1

— Bayes estimator (with squared error loss) is Y credible interval = usual frequentist ¢ interval
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4.6.2 Two samples

Xla"' 7Xmii'\(}N(,U/170—2)v Ylu"' 7Yni’i\(’iN(/J‘27o—2)70: (/’L17M27T: 1/02)T

A = p1 — o is of interest
prior

™ (s | 7) ~ N {0, (rmo) '}
m(p2 | T) ~ N {M207 (Tno)_l}

7(7) ~ gamma (v, 1/ o)

with similar derivations as in the last example, we can get the posterior
01X, Y ~ N {ut, (rm) b x N { b, (7)™} x gamma (o,1/8)

m' =mg +mpu = (mopro + mX) / (mo +m)
n' =ng +nphy = (nopzo +nY) / (no +n)
o =ag +m/2+n/2
o2 2
B =B + 72 (X;_ X) + % (mrz(ikmm) (#1120 — X)Q + 72 (Yi; Y) + % (n:(fn> (1120 — 57)2
= A, 7| X, Y ~N{A" = pf —pb,1/(vm') + 1/ (tn')} x gamma (o, 1/5)
—A | X, Y ~ t with center A’, scale 2 = (8'/a’) (m' +n') / (m/n’), and df 2o/

Letting g — —1,60 —0,mg = 0,n9g =0 such that (m0n0)1/2 /50 —1
— improper prior 7(8) = 1/7 (Jeffrey’s prior)
— A | X,Y ~ t with mean X — Y, scale® = s2(1/m +1/n), and df = m + n — 2, where s is the usual
pooled estimated variance.
4.6.3 Normal linear model
iid
Y(nxl) = X(nxp)A(P) + e(nxl)a €1," ", €En "~ N (07 02)

Normal-gamma prior:
AlT= 1/02 ~ N (Ao,zal/T) , T~ gamma (g, 1/00)
Posterior is also Normal-gamma:

A

Y ~N (A', (XTXJrEO)_l /T) , T’Y ~ gamma (o, 1/8")

where )
A= (XTX+3)  (XTY +ZpA)
o =ay+n/2
/ 1 nNT NnNT
8= o+ 5 { (Y =XA)"Y + (A0 - &) Do
A’ is a weighted average of the OLS estimator (X”'X) ~' XY and prior mean A,

A | 'Y is multivariate ¢ with center A/, scale matrix (8'/a/) (XTX + ) !, and df 2o/. For a subset of A, the
marginal posterior is also a multivariate ¢.

let Ag = 0,3 = dI,, with constant d = A’ = (XTX + de)_1 XTY, the ridge regression estimator.
Letting 3¢y — 0,0 — —p/2, and 3y — 0

= 7(A,7)=1/7

= A = (XTX) “'XTY, and A | 'Y is a p-dimensional ¢ with df n — p and scale matrix s? (X7 X) ~' where
2= (n—p) "' X (Y —xTA)’
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4.7 Hierarchical Bayes and empirical Bayes

Previously we discussed that case where prior 7(0) has been specified fully, say, 7(6 | ) with hyperparameter
a = oy given. What if unsure about ag ? We turn to Hierarchical Bayes.

Hierarchical Bayes: Apart from (0 | o), we also specify a hyperprior h(a) = h (e | 7o) with 7o given. The
resulting prior

7(8) =7 (8 | 7o) =/w<e | a)h (e | o) dex

m(y | @) = / f(y | 0)7(8 | )6
F(Y [0)7(0] o)

m(0] @ Y) = ST
m(Y | a)h(a)
e | Y) = [[F(Y [0)7(6 | o)h(ax)dcxd®
20]Y) = J (Y |0)7(0 | a)h(a)da

[ F(Y | 0)x(6 | a)h(c)dcdd
:/wwuxymm|yma
Empirical Bayes: use MLE & from marginal likelihood m (Y | a) (other estimators may also be used).

m(a | Y) highly peaked at & = 7(0 | Y) = 7(0 | &,Y) (taking 7(& | Y) ~ 1)

Empirical Bayes posterior has a similar mean, but smaller variability than the full Bayes.
Example 1: one-way normal random effects model

}/1]77’:17 aka]:]-v y Mg

Frequentist methods: fixed and random effects ANOVA.
Bayesian with fixed effects: earlier normal linear model. A Bayesian analogue of the random effects model:

Yi; | 0;,02 ~ N (0;,02) given 0y,--- 0,02, Y;; ’s are mutually independent
01,0k | @ = (1,04) “dN(u, ol)

™ (o

h(p) o
h(0a) o

ox 1 / oz ( Jeffrey’s

Of interest:
1. random effects population: x and o,
2. individual 6;
For the empirical Bayes approach, consider a simplified model with o2 known. Obtain & from the marginal
likelihood m(y | a). The posterior is 7(6 | &, Y).
4.7.1 James-Stein estimation

Yi,---,Y, are independent: Y; ~ N (6;,03) with o2 known.

While the parameters are unconnected in the model, the inferences regarding them are connected through the
squared error loss ||6 — 8(Y)||2. Consider Oy = Y, R(8,0) = bo2.

Stein (1955) proved the remarkable result that for b > 3, éMLE is inadmissible. James and Stein (1961)

provided a dominating estimator,
~ — g2
05 = {1 - (bbwg} Y
Zi:l Y;

shrinking Y toward 0.
Expected squared error loss

b R ) 1
SE (e)JSJ« - ei) = boZ — (b—2)%%E <b>
=1 ZiZI Y;Q
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which is less than the risk for 5MLE provided b > 3
Empirical Bayes interpretation:
prior: 6 ~ MN (0,071,)

o2 ) v marginal Y ~ MN (0, (62 + 02) I,) o2 is un-

— posterior: # | Y ~ normal with mean (1 - — 5
o) + Oa

known, but can be estimated from the fact

pl=208| a3
Yo Y2 of+ad

Thus, 05 may be viewed as an empirical Bayes estimator (Efron and Morris, 1972).
Alternative prior

6 ~ MN (p,021,)

Bayes posterior mean By + (1 — B)Y,B =

2+0'2
Marginal Y ~ ~ N (g, (0§ + 02) L)
unbiased estimators i =Y B = (b—3)o2/S0_, (Vi — Y)

James-Stein estimator Bji + (1 — B)Y,
shrinking towards sample mean Y and having expected squared error loss less than Y if b > 4.

4.7.2 Meta-analysis applications of hierarchical and empirical Bayes

Meta analysis: analysis of a group of studies related to the same question of interest. Each study has a point
effect estimate and its associated standard error.

Hierarchical Bayes: k studies. 4 th study - effect parameter §; and data Y;. Ignoring first-stage nuisance
parameters, 3 levels of the model are

k
Fy 10)=f (- ue | 00, 06) =[] f (i | 6)
i=1
k
70 a)=]]f0: o)
i=1
h(a)

Empirical Bayes:
marginal density of Y = estimator & for «
— estimated prior 7(0 | &)
— estimated posterior 7(0 | &,Y)
— empirical Bayes estimate close to posterior mean from the hierarchical Bayes, but the variance is smaller.
Example 1: Normal models with known variance
Data: (Y1,V1), -+, (Y%, V&), where Y; is approximately normal with variance estimated by V; (but treated as
known in analysis)
Frequentist fixed effect approach: all Y; ’s are approximately unbiased estimators of true effect 4 =— weighted
average Zf Vi) Zf , V.1 is approximately optimal. Assumption is not quite realistic!
Frequentist random effect approach 0; ~ N (p,02). The likelihood of Y or other methods can be used for the
estimation of ; and o,.
Hierarchical Bayesian:

Yi|0; ~ N (0:;,V;)

0; | pyoa ~ N (1, o)

h(u,0,) < 1 (noninformative prior)

Empirical Bayes: use estimator of (i, 0,) (same as those from the frequentist random effect approach) without
the hyperprior.
Full Bayes: with the hyperprior, MCMC is needed for the estimation.
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4.8 Monte Carlo estimation of a posterior

(most materials from Carlin and Louis, 1996)

Main technical problem in Bayesian analysis: obtaining the posterior density and computing summary
quantities such as posterior mean, standard deviation, and quantiles.

Which means we need to calculate integrals! As soon as we move away from conjugate priors and/or to
hierarchical models.

One approach is to resort to asymptotic results. More focus is on Monte Carlo methods.

4.8.1 Noniterative Monte Carlo methods

Direct sampling:

Suppose that @ ~ f(0) and v = E{h(0)} = [ h(0)f(0)d is of interest. Generate 6+,---,0y
obtain

i f(0) and

Indirect sampling:

1. Importance sampling
Consider a posterior expectation

S nO6)f(Y | 8)n(6)d0
[ (Y] 6)r(6)d0

Suppose that we can roughly approximate the normalized likelihood times prior, ¢f (Y | )7 (), by some
density ¢(@) from which we can easily sample. Define weight function w(6) = f(Y | 0)7(0)/g(0)

E{n(0) | Y} =

[ h(B)w(B)g(6)d8 N h(6;)w(8;)
PO =" egerde =~ Ny w (o))

where 6 Y g(0), the importance function.
The performance depends on how close g(0) resembles cf (Y | 0)7(6).

2. Rejection sampling
Consider posterior sampling

Y om0
"O1Y) = T5v o)r(0)d0

Suppose IM > 0 and a smooth density g(8)— envelope function - s.t. f(Y | 8)7(0) < Mg(0) then

(a) Generate 6, ~ g(0)
(b) Generate U ~ Uniform(0,1)
() If MUg (0,) < f(Y | 6,)7(8;), accept 8;; otherwise reject 6.

(d) Return to step (i) and repeat until a desired size is obtained. The members of this sample is an iid
sample from (0 | Y)

Figure 3: Graphical representation of the rejection sampling method

) Maw»
%)

The third condition ensures that the density of the sampled 6 is within [A, B]. Therefore, more likely to be
from the posterior distribution

3. Weighted bootstrap
Again consider the posterior density. Suppose that we have a sample 64, --- , 0y from approximating
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density ¢(0).
Define
_ f(Y | 6;)7(6;) o w

w; = - y 4 = —N
g(al) Zj:l U)j

Draw 6" from the discrete distribution over {64, - - - , 8y} which places mass ¢; at 6;.

In these indirect sampling methods, the prior 7(8), if proper, can play a role.

Example 1: Suppose Y1, --- ,Y, S N (,0?) and 7(0) = Cauchy(u, 7) with known o2, i, and 7. Likeli-
hood f(Y | #) is maximized at h=YV = M= fY | 5) in the rejection method, and ¢(#) = = (9).
However, 7(0) is often very flat relative to f(Y | ) = quite inefficient.

4.9 MCMC methods

4.9.1 Substitution sampling
Consider the 3 -stage hierarchical model
likelihood p(Y | 0)
prior p(6 | 1)
hyperprior p(n)

Assuming the prior is conjugate with the likelihood = marginal distribution p(Y | n) = [p(Y | 0)p(8 | n)d6
easily computed = closed-form posterior p(6 | Y,n) = %

Also assuming the hyperprior is conjugate with the prior = closed-form p(n | #) For inference, we seek the
marginal posterior,

p(01Y) = [ 0061 Yot | Y
and we also have

P Y) = / p(n | O)p(8 | Y)d6

Switching to generic notation, we have a system of two linear integral equations
(@)= [ pla [ w)plo)dy
(o) = [ oty | 2ol

where p(z | y) and p(y | z) are known, and we seek p(x). This is a fixed point system:
p@) = [ ol ) [ o)) p()do'dy
= /h(x,x’)p(w') dx’

where h (z,2') = [p(x | y)p (v | ") dy. Sampling-based algorithm:
Draw X (9 ~ py(z)
Draw Y ~ p (y | X©) ~ pi(y) = [ p(y | 2)po(a)dw
Draw X ~ p (2 | YD) ~ pi(2) = [ h(z,2') po (') da’
Repeat this process:
x4 x o p(z) YO Ly~ p(y)

Avariant: multiple v\ .. | v, % p (y | X(~1)) and single
X0 o5 = LS ([ v ®
Npl(“‘)*gzp @ | Y;
j=1

= automatically produce a smooth estimate of p(z)

Parallel sampling with multiple chains: Marginally independent replicates —> presumably better p;(x). But
wasteful.

Ergodic sampling with a single chain: Continue for an additional m — 1 iterations after convergence at iteration

1.
m

Aiw) = > p (w1 YY)
j=1
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To reduce high autocorrelation, retain only every k th iteration:

1 ¢ (i+(Gi—1)k)
= (e )
j=1

Although X and Y can conceivably be vectors, sampling from complex multivariate distributions is difficult
—> Require a K -variate extension. Consider K = 3 :

p(z) = / p(z, % | y)p(y)dydz
ply) = / ply, @ | 2)p(z)dadz
p(z) = / p(z,y | )p(z)dedy

Closed-form bivariate conditional distributions are unlikely available. With univariate distributions only:
o) = [ vl | 20p(e | o)y
p(0) = [ ply | 2. p(o | o) dodz
p(:) = [ 0z | 2oty | ap(o)dzdy

6 of them!
General K-dimensional problem —> K (K — 1) distributions = impractical for large K.

4.9.2 Gibbs sampling

Gibbs sampler can be viewed as a special case of Metropolis-Hastings. And Metropolis-Hastings algorithm is a
generalization of the Metropolis algorithm.
Under mild conditions, between full or complete conditional distributions and joint distribution

{pl(Ul‘U]¢Z)7221a7K} — p(UlaaUK)

Suppose these full conditional distributions are available for sampling. Given an arbitrary set of starting values
(U 1(0), U ;? )) , the algorithm proceeds as follows:

DrawUl(l) ~ p1 (Ul | U2(0)7 e 7U1(<0)> ;
DraWUQ(D ~ P2 (Uz | Ul(l)’Uz)Eo)a"' 7U}(?)) )

DraWUl((l) ~ PK (UK | U1(1)7 e 7U[((111) )
completing one iteration of the scheme. After ¢ such iterations, we obtain (Ul(t), ce U}?).

(Ul(t)’... ,U}p) i(Ul’... Ug) ~p Uy, Ug)

Hierarchical models with conjugate priors and hyperpriors = closed form {p; (U; | Uj»;,Y),i=1,--- , K}
= joint posterior p (Ui, -+ ,Uk | Y) by Gibbs sampler.
Marginal posterior p (U; | Y) can be obtained the same manner as before. For example, with parallel sampling,

t t t
U | Y) = ZP(U |U1(J)7"' ® 1]7Uz(+)137"' 7U§(?j7y)

which is less variable than a kernel-smoothed estimate.
What about non-conjugate priors? One may consider, for example, an indirect sampling method. But such a
solution is not ideal.
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4.9.3 Metropolis-Hastings algorithm

Target: joint posterior p(u) for (possibly vector-valued) U
Candidate or proposal density: ¢(v,u) such that ¢(-, u) is a pdf Vu, and ¢(u,v) = q(v, u)Vu,v.
The Metropolis algorithm:

1. Draw v ~ ¢ (-, U=Y)
2. Compute the density ratio r = p(v)/p(u)
3. Ifr>1,set UM =

v with prob r

® =
ffr<l,setl { u with prob 1 —r

Mild conditions = U® % U7 ~ p(+).
p(+) is needed only up to proportionality constant:

m(0|Y) oc f(Y | 0)7(6)

in Bayesian applications.

Why symmetric g ?

Consider finite state spaces, where the transition kernel can be represented by matrix P; P;; is the prob of
moving from state i to j.

The Markov chain has equilibrium distribution

d=(di, - ,dp)"

if and only if
d’"P=d".

Symmetric ¢ =
d; P;; = d; [mm ( Z ) Q”] = min (d;, d;) Qi
=min (d;,d;) Qj; = d; Pj;

= chain is reversible —
k k
(@"p), Zd Py =Y diPi=d;» Pji=
i=1 i=1

For the continuous parameter settings, a convenient choice for g is a N (H(i_l), f]) In theory, any positive-

definite 3 suffices. Care is required in practice:

* too large = large jumps = many candidates far from posterior support and rejected —> tendency to
"get stuck”

* too small = "baby-stepping”

A simple but important generalization of the Metropolis algorithm was due to Hastings, by dropping the
symmetry requirement of ¢ and redefining

From Yale BIS 567
Metropolis Algorithm

Define h(0) = f(y | 0)f(0) and ¢ (0* | O(t_l)) is a candidate or proposal density. It must satisfy
1. valid density function for every possible value of 6~
2. be symmetric ¢ (0* | B(tfl)) =q (0(“1) | 0*). For example
* ¢ (0" 16“) = Uniform (60~ — 5,61 + )

. g (0* | O(t_1)> = Normal (0(t_1),52)
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0 is chosen to make the algorithm run more efficiently. A poor choice of § leads to high correlation in the
Markov chain.

(a) ¢ too big: Low acceptance of a new # and high correlation between samples

(b) ¢ too small: High acceptance of a new # and high correlation between samples

Generally, acceptance around 20% to 50% is desired. Pilot runs are often required to properly tune the
algorithm and select a reasonable 4.

The algorithm: for¢t =1,...,7T :
1. draw #* from ¢ ( | 9(*1))

2. compute r = h (0*) /h (B(t_l)) = exp [log{h (0°)} — log {h (g(t—1)> H
3. ifr > 1, set ) = 0*%; if r < 1, set

oy _ [ O with probability r
0%~ with probability 1 — r

Under mild conditions (similar to those for the Gibbs sampler), a draw ) converges in distribution to a draw
from the true posterior density f(0 | Y = y).

Intuition:

Suppose we have a working set of posterior samples {0(1), .0 } We want to add a new sample to the

set, 0*, which is nearby ). If f (8" |Y =y) > f (0(5) Y = y) , then we want to add 6* to the set. If

fe Y=y <f (0(5) Y = y) , then we don’t necessarily want to add it to the set. So we accept it with
probability r

[0 1Y =y) _ fylf)f(0) f() _ _fyler) (o)

£(69 1 =) F)  Fyl0W)F(0W)  f(y09)f(0w)

4.9.4 Hybrid forms

Several MCMC algorithms may be combined in a single problem, to take advantage of the strengths of each.
Markov kernels Py, - - - , P, all have stationary distribution p; they may correspond to, say, one Gibbs sampler
and m — 1 Metropolis algorithms.

Mixer: At each iteration, kernel P; is chosen with prob «;, where ). o; = 1.

Cycle: Each kernel P, is used in a prespecified order.

Metropolis within Gibbs: In the case that, say, all full conditional distributions are available in closed form
except for one, a Metropolis subalgorithm may be embedded in the Gibbs sampler.

5 Large sample theory
6 M-Estimation (Estimating Equations)

6.1 Introduction

n

> w(vi;0)=0

=1
Y1,---,Y, : independent but not necessarily identically distributed
0 : b x 1 parameter
W : b x 1 function

Example 1. the mean estimator § = n~! Sor Y, is from

n

Y (Yi-6)=0

i=1
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the deviance from the mean §; = n—? S, |Y; — Y| is from

~(Yi—6al -0 _
Z( vi—6, )0

=1

6.2 Basic approach

Suppose Yi,---,Y, ™ F and the true parameter 6 is defined as a solution to

Ep® (Y1,0) = / U (y,0)dF (y) = 0

if ¥ is suitably smooth then by Taylor expansion of

Go(0) = n 'S (1, 0)
=1

we have
0= Gn(6) = G, (80) + G, (80) (5 - eo) +op (n_l/Q)
Vi (8- 00) = (=G, (60)} " VG (60) + 0,(1)
by WLLN
~G! (8y) = —nt zn: T’ (V;,00) & Ep {—% (Y1,00)} = A (60)
by CLT o

ViiGy (60) 5 N (0, B (60)) where B (8)) = Er { ¥ (v3,60)% |
then by Slutsky’s theorem

0 ~ AN (8, V (60) /n) whereV (8,) = A (6,) ' B (60) { A (90)—1}T

More generally, the estimating equation does not have to be exactly 0, for example
n 1 n
. — 1/2 ) 3 _ —1/2
;@(ne) op (n ):n;@(m,a) op (n71/2)

The asymptotic distribution of § remains the same.

6.2.1 Estimation for A, B, and V

Empirical estimator of A (6,) :
Au(Y,0) = 07" > ¥ (v:,9)
i=1

Empirical estimator of B (6y) :

B,(Y,0) =n" zn: v (Yi,@)@
1=1
then T
V,.(Y,0) = A, (Y,0)'B,(Y,0) {An(Y,@)*l}

A special case is the MLE, where

A (8y) =B (8)) =1(6y) V (80)=1(6)"
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Example 2. Sample mean and variance

(¥, 6) = ( Y )
A(90)=E{—‘1"(Y1»90)}:E<z(yll_em) (1)>:((1) (1)>

B (6,) :E{lP(Yl,OO)@Q} - < ot )

M3 M4 — 0
V (60) = B (6y)
SRR (RS o R (R o
B.(Y,0) =n ;(ofi_y)g {(n—Y)Q—s%}g)

theestimated@—(}_f )" i5 the MLE for th 1 densi 10) = L _=0n)?
= (V,s2) isthe or the normal density f(y;0) = exp 5

271‘02 2

Example 3. Ratio estimator
Foriid (Y1,X1), -+, (Y, X,) and px #0

A(0y) = E(X1) = px

B(6) =E {(Yl - 90X1)2}

V(6)=FE {(Y1 - 90X1)2} WG

The ¥ functions are not unique, it can even be of different dimensions

Y; — 0,
‘IJ(}/HXMO): XZ_92
01 — 0305
1 0 0
AG)=| 0 1 0
—1 B3 0O
oy oyx 0
By =| oyx o% 0 singular
0 0 0

V (00) = A (60) " B (8) {A (00)'}

1
V33 — g (0’}2/ — 29300—YX + 9%00%()

6.3 Delta method via M-estimation
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