BIOS 760R: Adv Causal Inference Statistcs & Probability Instructor: Dr. Razieh Nabi
September 10, 2023 Cheat-sheet Teaching assistant: Anna Guo

1 Probability rules

e Joint distributions: The joint cumulative distribution function (CDF) of random variables
(r.v.s) X and Y is the function Fx y given by

Fxy(z,y) =P(X <Y <y).

The joint probability mass function (PMF) of discrete r.v.s X and Y is the function px y given by
pxy(z,y)=PX =2Y =y).

The joint probability density function (PDF) of continuous r.v.s X and Y with joint CDF Fx y is

the function fx y given by
2

Ozxdy
e Marginalization: For discrete r.v.s X and Y, the marginal PMF of X is

fxy(z,y) = Fxy(x,y).

P(X=z)=) P(X=uxY =y).

For continuous r.v.s X and Y with joint PDF fxy , the marginal PDF of X is

Ix(z) = /_C>o fxy(x,y)dy.

e Conditional distributions: For discrete r.v.s X and Y, the conditional PMF of Y given
X =xis
PX =2Y =y)

P(X =x)
For continuous r.v.s X and Y with joint PDF fx y , the conditional PDF of ¥ given X =z is

P(Y=y|X=1)=

frix(ylz)= W, Va that fx(x) >0

e Bayes’ theorem: ( ) | )
_P(X)Y) PY|X)P(X
PEIY =500 = )

e Independence of random variables: Random variables X1,..., X, are independent if
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e Expectation: The expected value (also called the expectation or mean) of a discrete r.v. X
whose distinct possible values are x1,zo, - is defined by

Zasj =z;), or E(X)= Z x  P(X = x) if the support is finite.
<~
© value  pMF at o

The expected value of a continuous r.v. X with PDF f is

Properties of Expectation:

1. Let g and h be functions of random variables X and Y (discrete or continuous) respectively,
and let a and b be constants.
E(aX +b) =aE(X)+b

E(X+Y)=EX)+E®Y)
E{ag(X) + bh(X)} = aE{g(X)} + bE{h(X)}
2. IF X and Y be independent random variables, then
E(XY)=EX)E®Y

~—

e Covariance: The covariance between r.v.s X and Y is
Cov(X,Y)=E{(X —EX))(Y —E(Y))} = E(XY) - E(X)E(Y)
Properties of Covariance:
1. Cov(X, X) = Var(X)
. Cov(X,Y) = Cov(Y, X)

X, ¢) =0 for any constant ¢

2 (X,

3. Cov(

4. C V(aX Y) =aCov(X,Y) for any constant a

5. Cov(X +Y,Z+ W)= Cov(X,Z) + Cov(X,W) + Cov(Y, Z) + Cov(Y, W)
6

. If X and Y are independent, then Cov(X,Y) = 0, but the reverse is not necessarily true (only
true under normality assumption).

e Variance: The variance of r.v. X is
Var(X) = E(X — E(X))? = E(X?) - E*(X)
The square root of the variance is called the standard deviation (SD):
SD(X) = 4/ Var(X).

Properties of Variance:

Go to page 1 2



1. Let g(X) be a function r.v. X (discrete or continuous), and let a and b be constants:
Var(aX + b) = a® Var(X).
Var{ag(X) + b} = a* Var{g(X)}.
2. For twor.v.s X and Y:

Var(X +Y) = Var(X) + Var(Y) +2Cov(X,Y).
For nrv.s Xq,..., X,:

Var (X; +---4+ X,,) = Var (X;) +--- + Var (X,,) +2ZCOV(Xi,Xj)

i<j
3. If X and Y are independent, then

Var(X +Y) = Var(X) + Var(Y).

For n independent r.v.s X1,..., X,

Var (X; 4+ -+ X,,) = Var (X;) + - - - + Var (X,,)
e Conditional expectation:
EY|X=2x)= ZyP(Y =y | X =2a), fY is discrete
y
EY|X=2)= / yfyix(y | z)dy, if Y is continuous.

e Law of total Expectation/Tower rule/Adam’s law:

E(X) =E(E(X [Y))
E(X |Y)=EEX|Z2Y)|Y)

Properties of conditional expectation:

1. If X and Y are independent, then

E(Y | X) = E(Y).

2. For any function h,
Eh(X)Y | X)=h(X)E(Y | X).

3. Linearity
EMi+Y [ X)=EM | X)+E(Y2 | X).
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4.

Projection interpretation: For any function h, the random variable Y — E(Y | X) is uncorre-
lated with h(X), i.e., cov(Y —E[Y | X], (X)) = 0. Equivalently,

E[(Y —E(Y | X))h(X)] = 0.
Proof.
By applying the tower rule, we have
EE(Y —E(Y | X)h(X) | X)]
ER(X)EY —E(Y [ X) | X)]
ER(X)EY | X) —EQY | X))]
0

Conditional variance: The conditional variance of Y given X is

Var(Y | X)=E((Y —E(Y | X))’ | X) =E (Y*| X) - E*(Y | X).

Law of total Variance/Eve’s law:

Var(Y) = E[Var(Y | X)] + Var(E[Y | X])

2 Inference

1.

Modes of Convergence: Under probability measure space (2,4, P).

Convergence almost surely: X, is said to converge almost surely to X, denoted by X,, —,.5. X,
if there exists a set A C 2 such that P (A°) = 0 and for each w € A, X,,(w) = X(w) in real
space. Equivalently,

Xn —as X <= Ve>0. lim P(sup |Xm—X|>6>:0,

n—00 m>n

. Convergence in probability: X, is said to converge in probability to X, denoted by X,, =, X,

if for every € > 0,
P(X,—X|>¢ —0

. Convergence in moments/means: For X,,, X € L,(P), X, is said to converge in 7-th mean to

X, denoted by X,, =, X if
E(X,—-X|")—0

(X € L.(P): E(|X|") < inf )

. Convergence in distribution: X, is said to converge in distribution to X, denoted by X,, —4

X, if the distribution functions of X,, and X, denoted by F,, and F' respectively, satisfy

for each continuous point x of F'.
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e Relationship among modes:
1. X)), =06 X=X, =p X.
2. Xy =p X = X,,, —4.5. X for some subsequence X,,, .
3. X, - X=X, =, X.

4. X,, =, X and |X,|" is uniformly integrable (limy_,oo sup, E{|X,|I (| X,| >N} = 0) =
X, —r X.

5. X, —p X and limsup, F |X,,|" < E|X|" = X,, =, X.
6. X’ﬂ_>TX:>Xn_>7"7VO<T/<T.
7. Xn_>pX:>Xn—>dX

8. X, —, X if and only if for every subsequence {X,, }, there exists a further subsequence
{Xn,w} such that X, —as X.

9. X, —q c, for some constant c = X,, —, c.

e Algebra of big O and small o:
O(+) and o(-) in calculus: For two sequences of real numbers {a,} and {b,},

1. an = O (by) if and only if 3C € R, such that |a,| < C'|b,|, V1.
2. a, = o(by) if and only if a, /b, — 0 as n — .

O(-) and o(+) for random variables: Let X1, --,X,, and Y7, --,Y,, be random variables defined a
probability space (€2, A, P).

1. X, =0(Y,), as. if and only if X,,(w) = O (Y,,(w)), a.s. wrt P.
2. X, =0(Y,), as. if and only if X,,/Y,, =, O.
3. X, =0, (Y,) if and only if for any € > 0, there is a constant C. > 0, such that

sup P (| X,| > Ce |Ya|) <€

4. X,, =0, (Y,) if and only if X,,/Y,, —, 0.

Properties of big O and small o:

1. X, =o0p(1) = X,, = 0,(1).

2. Wy, = 0,(1), X, = 0,(1) = W, + X,, = 0,(1), W, X,, = O,(1).

3. Wy = 0,(1), X, = 0p(1) = Wy, + X, = Op(1), WnX,, = 0,(1).

4. X, =0, (Y,), Wy =0, (Zn) = WnXp =0, (YnZy), Wy + X,, = O, (max (Z,,Y,))
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o Weak law of large nu_mbers: If X1, X5,..., X, arei.i.d with mean u, then for sample mean
X, =>",X;/n, we have X,, =, 1.

e Strong law of large numbers: If X;, X5, ..., X,, are i.i.d with mean u, then X,, =, u.

e Central limit theorem: Suppose {X1, Xa,..., X} is a sequence of i.i.d. random variables
with E(X;) = p and Var(X;) = 6% < oo then as n — oo, X — N(u, "72)

e Score: For r.v X with PDF f(x;0). Score Z is defined as the partial derivative with re-
spect to 6 of the natural logarithm of the likelihood function:

Z=10= %logf(X 0)

E(Z)=0and Z % N (0,1(0))

e Fisher information: The variance of the score is defined to be the Fisher information

1(0) =E K;" log f(X; 9))2] [(,f; log f(X; 9)]

e Maximum likelihood estimation (MLE): Conmder a parametric model f(z;0) where 6 €

R*. Suppose we have n i.i.d observations X1,...,X, ~ f(x 0). MLE estimator, denoted by 0, is
constructed by maximizing the likelihood function L(G) or equivalently the log-likelihood function

10)
=[[fx0).  10) =log(L Zlog (Xi30)).

Properties of MLE estimators:

1. Consistency: 6 —p 0

2. Efficiency: it achieves the Cramer—Rao lower bound (discussed below) when the sample size

tends to infinity.
1

"1(6)
e Delta method: If a function g : R — R is continuously differentiable at 8 € R, and if

V(6 — 6) = N(0, v(6))

in distribution as n — oo for some variance v(#), then

Va(g(0) — g(9)) — N (0,4 (6)%v(6))

V(0 = 0) =4 N(O )

Proof. . R
Perform a Taylor expansion of g(f) around § = 6 :
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Rearranging yields R X
Vn(g(0) — g(0)) = vn(0 — 0)g'(9).

The result follows, because multiplying /n(f — ) by ¢'() scales its variance by ¢'(6)2.

e Continuous mapping theorem: Suppose that X,, —,, X or X;, =, X or X,, —4 X.
Then for any continuous function g, g(X,,) converges to g(X) almost surely, or in probability, or in
distribution respectively.
e Slutsky Theorem: Suppose X,, =4 X, Y,, =, Y and Z,, =, Z for some constant y and z.
Then

ZnXn +Yn =g 2X +y.

e Cramer-Rao lower bound: Consider a parametric model f(x;6) where 6§ € R is a single

i.4.d
parameter. Let T be any unbiased estimator of § based on data Xi,...,X, ~ f(z;0). Then
(under mild smoothness assumptions)

1
nl(f)

Var[T] >

Proof.

0 "9
Z = %Ing(leuanva)_;%Ing(Xive)‘

Given that

00

(The score has mean 0, and variance given by the Fisher information.) Then

E [a logf(Xi;H)} =0, Var [gglogf(Xi;H)} = 1(0).

E[Z] =0, Var[Z] = nl(h).

Note that the correlation between Z and the estimator T is always between —1 and 1:
Cov[Z,T)? < Var[Z] x Var[T] < nl(f) x Var[T]

Since T is unbiased,

0 =E[T) :/T(zl,...,xn)f(xl,...,xn;ﬁ)d:cl...dxn.

Differentiating both sides with respect to 6,

1:/T(ml,...,xn)%f(ml,...,a:n|9)d331...dxn

:/T(xl,...,xn) (gelogf(xl,...,z"|0)>f(z1,...,xn|9)dm1...dznEQ[TZ].

Since E[Z] = 0, this implies
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Cov[T,Z] =E[(T —ET)(Z —EZ)] =E[T (Z - EZ)| =E[TZ] = 1,

so Var[T] > —- as desired.

nl(0)
Corollary.
For a parametric model f(x;6) with a single parameter § € R, if T is any unbiased estimator of
g(0) based on data X1,..., X, ES f(x;0), then (under mild smoothness assumptions)
g'(9)°
Vary[T] >

wolT) 2 1)

Proof.

Similar as the previous proof but need Delta method additionally.

e Ancillary statistics: A statistics S(X) whose distribution does not depend on the parameter
0 is called an ancillary statistic. More precisely, a statistic S(X) is ancillary for © if it’s distribution
is the same for all § € ©.

Example (Location Family Ancillary Statistic): Let Xi,---, X, be i.i.d. observations from a lo-
cation parameter family with CDF F(z — ), —oo < 6 < co. Let X(1) < --- < X(5) be the order
statistics from the sample. The range R = X(,) — X(1) is always an ancillary statistic.

Proof.

Suppose Z1,- -, Z, are i.i.d. observations from F(z), with X; = Z; +60,--- , X,, = Z, + 6. It
follows that the CDF of the range R is

Fr(r;0) = Po(R<r1)=Fp (maxXi —min X; < r)
=P (max Z; —min Z; < r)
The distribution of Z; does not dependent on #. Thus, the CDF of R does not depend on 6 and

hence R is ancillary.
Example: Let Xi,---, X, be i.i.d observations from N(u,o?). Let

1 " — .2
SQ:H_IZ(XZ»—X”)
i=1

‘We know that
g 2
X’n,— 1

52 ~
n—1

so that S? depends on o2 but not on u. Therefore, S? is ancillary for
01 ={(n.0%) : 0” = 05},

but is not ancillary for
O, = {(u,a2) co? > 0}.
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