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Motivation

▶ Analyzing data missing-not-at-random (MNAR) is challenging.
▶ Existing approaches for identification and inference under MNAR

mechanisms rely on fully observed variables and/or untestable model
assumptions.

▶ A more relaxed set of statistical assumptions is needed.

Missing Data DAG Models

▶ L = {X ,Y}: variables with missing values,

▶ R = {Rx,Ry}: binary indicators, Ri = 1: observed, Ri = 0: missing,

▶ L∗ = {X ∗,Y ∗}, deterministically defined proxy variables:
L∗

i = L if Ri = 1, and L∗
i =? if Ri = 0.

▶ Missing data DAG models: a set of distributions p(L,R,L∗) that factorizes
as: ∏

Li∈L

p(Li | paG(Li))×
∏

Ri∈R

p(Ri | paG(Ri))×
∏

L∗
i ∈L∗

p(L∗
i | paG(L∗

i )).

▶ Missingness mechanism: p(R | L), Full law: p(L,R),
Target law: p(L), Observed data law: p(L∗,R).

Criss-Cross MNAR Model
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Figure: (a) Criss-cross MNAR model; (b) Permutation model [2]; (c) Block-parallel model [1]; (d)
Block-conditional MAR model [3].

1. Neither full law nor target law is identifiable
(proof via a bivariate normal counterexample)

2. Only known structure thus far that prevents target law identification.
(besides Li → Ri self-censoring)

3. Super model of several popular MNAR models shown above.

(a) Rx ⊥ X | Y ; Ry ⊥ Y | X ,Rx.

(b) Rx ⊥ X | Y ; Ry ⊥ Y ,X | Rx , X ⋆ ⇒ Ry ⊥ Y | Rx = 1, X ; Ry ⊥ Y ,X | Rx = 0.

4. Permits missing values for all variables.
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Figure: Shadow variable setup considered in Wang et al, 2014

Identification

Partial Identification & Testability

▶ p(X | Y ) is nonparametrically identifiable ⇒ testability of X→Y .

p(X | Y ) = p (X | Y ,Rx = 1) =
p (X ,Y ,Rx = 1)∫
p (x ,Y ,Rx = 1)dx

p (X ,Y ,Rx = 1) =
p (X ,Y ,Rx = 1,Ry = 1)
p (Ry = 1 | Rx = 1,X ,Y )

=
p (X ,Y ,Rx = 1,Ry = 1)
p (Ry = 1 | Rx = 1,X )

.

Target Law Identification

▶ Nonparametric identification of X |Y sheds light on identifying the target law:
for two distinct points of X : x1 and x0

p (x1 | y)
p (x0 | y)

=
p (y | x1)

p (y | x0)
× p (x1)

p (x0)
.

▶ Exponential family

p(x) ∼ exp

{
xηx − bx(ηx)

Φx
+ cx(x ; Φx)

}
p(y | x) ∼ exp

{
yη − b(η)

Φ
+c(y ; Φ)

}
,g(µ(η))=α+βx .

▶ Assume X takes k + 1 distinct values x0, x1, · · · , xk .
Let φ = [g ◦ µ]−1 and ζ = b ◦ φ,
ϕi(θ) = {φ(α + xiβ)− φ(α + x0β)}/Φ

ζi(θ) =
−ζ(α + x1β) + ζ(α + x0β)

Φ
+
ηx(x1 − x0)

Φx
+ c(x1; Φx)− c(x0; Φx)

J = ∂(Φ, Z )/∂θ.

▶ Target law p(X ,Y ) is ID if: (i) k ≥ dim(θ), and (ii) J has full rank.
▶ Generalizable to non-exponential family and multivariate X .

Full Law Identification

▶ Completeness condition: ∀h(X ) with finite mean, E{h(X ) | Y} = 0 implies
h(X ) = 0 a.s.

▶ Exponential family is a special case.

▶ Full law p(X ,Y ,Rx,Ry) is ID if:
(i) J is full rank, and (ii) completeness condition holds.

Bivariate Normal Example(
Y
X

)
∼

[(
µ1
µ2

)
,

(
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

)]
.

▶ Target law and full law are ID: one of {µ1, µ2} + any of {σ1, σ2, ρ}
▶ Pseudo-likelihood with logistic regression: vk = (xi − xk) |yi − yk |

uk =

{
1 if yi − yk > 0
0 if yi − yk < 0.

Estimation and Inference

Pseudo-likelihood

▶ Order statistics: X̃ = (x(1), . . . , x(n))

p(x1, . . . , xn | rx1 = ry1 = 1, . . . , rxn = ryn = 1, y1, . . . , yn, X̃ )

=

∏n
i=1 p (xi | yi)∑

permutation of x

∏n
i=1 p

(
x(i) | yi

) complexity of order n!

≈
∏
i<k

p (xi | yi)p (xk | yk)

p (xi | yi)p (xk | yk) + p (xi | yk)p (xk | yi)

=
∏
i<k

1
1 + Q (xi, yi; xk , yk)

, Q = OR−1.

▶ Model specification: p(X | Y )

Generalized Estimating Equations

▶ GEE
E
[ Rx × Ry

p(Ry = 1 | Rx = 1,X )
× f (Y )× (X − E(X | Y ; θ))

]
= 0

▶ Optimal GEE

fopt(Y ) =

[
E
{

(X − E(X | Y ; θ))2

p(Ry = 1 | Rx = 1,X )
| Y

}]−1
∂E(X | Y ; θ)

∂θ

∣∣∣∣
θ=θ0

▶ Model specification: p(Ry = 1 | Rx = 1,X ) and E(X | Y ; θ)

Simulation: Odds Ratio Estimation

Illustrating unbiasedness of the estimators and the efficiency of optimal GEE:

Future Work

▶ Developing a doubly-robust estimation framework.
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