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Vaccine study

A
(Vaccine)

X
(Measured)

Y
(Covid-19)

1. Objective: evaluate the causal effect of vaccine on Covid-19 incidence.

Average Causal Effect: E(Y a=1)−E(Y a=0), Target Parameter: ψ := E[
Y a0

]
, a0 ∈ {0,1}

2. Challenge: presence of unmeasured confounders U .

3. Solution: presence of mediator(s) M =⇒ front-door model (Pearl, 1995)
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Identification

Identification Assumptions:
1. No direct effect: Y a,m = Y m , ∀a,m;

2. Conditional ignorability: M a ⊥ A | X & Y m ⊥ M | A, X ;
A M

UAM

U X

Y

UMY

(Encoded assumptions)3. Consistency: M a = M when A = a & Y m = Y when M = m;

4. Positivity: P (A = 1 | X = x) > 0, P (M = m | A = a, X = x) > 0, ∀x with P (X = x) > 0

Identification functional:

ψ(P )=
Ï 1∑

a=0
E(Y | m, a, x)︸ ︷︷ ︸

µ(m,a,x)

p(a | x)︸ ︷︷ ︸
π(a|x)

p(m | a0, x)︸ ︷︷ ︸
fM (m|a0,x)

p(x)︸︷︷︸
pX (x)

dm d x (target estimand).

The above functional depends on the following nuisance parameters:
Ï outcome regression: E[Y | m, a, x], denoted by µ(m, a, x)

Ï propensity score: p(a | x), denoted by π(a|x)

Ï mediator density: p(m | a0, x), denoted by fM (m | a0, x)

Ï covariates density: p(x), denoted by pX (x).

Let Q = {µ,π, fM , pX }, we can write ψ(P ) as ψ(Q).
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Estimation - Plugin Estimator

ψ(Q)=
Ï 1∑

a=0
µ(m, a, x) π(a | x) fM (m | a0, x) pX (x) dm d x (ID functional)

ψ(Q̂) = 1

n

n∑
i=1

∑
m

1∑
a=0

µ̂(m, a, Xi ) π̂(a | Xi ) f̂M (m | a0, Xi ) (plugin estimator).

Limitations:

Ï density estimation and numeric integration

Ï first-order bias: ψ(Q̂) =ψ(Q)− PΦ(Q̂)︸ ︷︷ ︸
first-order bias

+ R2(Q̂,Q)︸ ︷︷ ︸
remainder term

(von Mises Expansion).

where Φ(Q) is the efficient influence function of ψ(Q), which is unique under
nonparametric models, such as the front-door model.
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Estimation - Onestep Estimator

Ï Correction for the first-order bias yields the onestep estimator

ψ(Q̂) =ψ(Q)−PΦ(Q̂)+R2(Q̂,Q) =⇒ ψ+(Q̂) =ψ(Q̂)+PnΦ(Q̂).

Ï Fulcher et al. (2020) first derived Φ(Q), and suggested the following estimator:

ψ+(Q̂) = 1

n

n∑
i=1

f̂M
(
Mi | a0, Xi

)
f̂M

(
Mi | Ai , Xi

) {
Yi − µ̂

(
Mi , Ai , Xi

)}
+ I

(
Ai = a0

)
π̂

(
a0 | Xi

) {∑
a
µ̂

(
Mi , a, Xi

)
π̂

(
a | Xi

)−∫ ∑
a
µ̂

(
Mi , a, Xi

)
π̂

(
a | Xi

)
f̂M

(
m | a0, Xi

)
dm

}
+

∫
µ̂

(
m, Ai , Xi

)
f̂M

(
m | a0, Xi

)
dm

Ï Nuisance estimates: Q̂ = {µ̂, π̂, f̂M }, while pX is emiprically evaluated

Ï Double robustness: ψ+(Q̂) is a consistent estimator if either f̂M or {µ̂, π̂} is correctly
specified in parametric models.
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Estimation - Onestep Estimator

Limitations
Ï The proposed onestep estimator requires estimating the mediator density

fM (M |A, X ). A daunting task under large collection of mediators of different types.

Ï Onestep estimator may yield estimates that is outside of the range of the target
parameter, especially for binary outcome.

Ï The asymptotic behavior of this one-step estimator, along with its second-order
remainder term, requires additional investigation.

Solutions
Ï Re-parameterize ψ(Q) to avoid direct density estimation

Ï Adopt Targeted Minimum Loss Based Estimation (TMLE) (Van der Laan et al.,
2011)
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Estimation - Onestep Estimator

Nuisances that involving the conditional density fM :

ψ+(Q̂) = 1

n

n∑
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f̂M
(
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)
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(
a0 | Xi

) {∑
a
µ̂

(
Mi , a, Xi

)
π̂

(
a | Xi

)−∫ ∑
a
µ̂

(
Mi , a, Xi

)
π̂

(
a | Xi

)
f̂M

(
m | a0, Xi

)
dm

}
+

∫
µ̂

(
m, Ai , Xi

)
f̂M

(
m | a0, Xi

)
dm

Ï Mediator density ratio estimation via Bayes rule

f r
M (m, a, x) = fM (m | a0, x)

fM (m | a, x)
= λ (a0 | x,m)

λ(a | x,m)
× π(a | x)

π (a0 | x)
,

where λ(a | x,m) = p(A = a | X = x, M = m).

Ï Sequential regression for estimating γ(x): γ(x) = E (ξ(m, x) | a0, x)

Ï Sequential regression for estimating η(x)

η(a, x) =
∫
µ(m, a, x) fM |A,X (m | a0, x)dm = Aκ1(X )+ (1− A)κ0(X ).
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Estimation - Onestep Estimator (Reparameterized)

Ï Reparameterized onestep estimator

ψ+
2 (Q̂) = 1

n

n∑
i=1

[
f̂ r

M

(
Mi , Ai , Xi

){
Yi − µ̂

(
Mi , Ai , Xi

)}
+ I

(
Ai = a0

)
π̂

(
a0 | Xi

) {
ξ̂
(
Mi , Xi

)− γ̂(
Xi

)}
+{

κ̂1
(
Xi

)− κ̂0
(
Xi

)}{
Ai − π̂

(
1 | Xi

)}
+γ̂(

Xi
)]

. (second one-step estimator)

new set of nuisance parameters: Q = {µ,π, pX , f r
M ,γ,κ︸ ︷︷ ︸

fM

} or {µ,π, pX ,λ,γ,κ︸ ︷︷ ︸
fM

}.

Ï The onestep estimator resolves the first-order bias by adding PnΦ(Q̂) on top of
the plugin estimator.

Ï Unaddressed: estimates that fall out of the parameter space.
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Estimation - TMLE Estimator

Ï Update Q̂ =⇒ Q̂∗ s.t PnΦ(Q̂∗) ≈ 0. TMLE estimator is defined as ψ2(Q̂∗)

The TMLE procedure

1. Obtain an initial estimate of the
nuisances Q̂ = {µ̂, π̂, · · · }

2. loss functions L : Q → R
parametric submodels Q̂ϵ s.t

(C1) Q̂ = Q̂ϵ=0
(C2) Q = argminQ̃∈MQ

∫
L(Q̃)dQ

(C3) ∂
∂ϵ

L
(
Q̂ϵ

)∣∣∣
ϵ=0

=Φ(Q̂)
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Estimation - TMLE Estimator

Theorem (Asymptotic linearity of ψ2(Q̂∗))
Assume the nuisance estimates Q̂⋆ = (µ̂∗, π̂∗, γ̂∗, κ̂, λ̂) have the following L2(P ) rates of
convergence:

||π̂∗−π|| = oP (n− 1
k ), ||µ̂∗−µ|| = oP (n

− 1
q )

||γ̂∗−γ|| = oP (n
− 1

j ), ||κ̂a −κa || = oP (n− 1
ℓ ), ||λ̂−λ|| = oP (n− 1

d ).

The TMLE ψ2(Q̂∗) is asymptotically linear if the following condition as well as the
Donsker condition are satisfied.

1

q
+ 1

k
≥ 1

2
,

1

d
+ 1

q
≥ 1

2
,

1

k
+ 1

j
≥ 1

2
,

1

k
+ 1

ℓ
≥ 1

2
.

Ï Embrace a larger set of machine learning & statistical models

Ï Cross-fitting as an alternative of Donsker condition.
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Extension of the Front-door Model - Identification

Generalize front-door model to settings with multiple mediators that have different
confounding behavior

A M L

X

Y

(a)

A M L

X

Y

(b)

Ï primal fixability of A: no bidrected ↔ path from A to its children.
Ï primal fixability of A ⇐⇒ identifiability of the causal effect of A on V \A (Tian and

Pearl, 2002)

Ï identification of E(Y a0 )

ψ(t ) = ∑
V \A

Y × ∏
Mi∈M

p
(
Mi | mpG

(
Mi

))∣∣
A=a0

×∑
A

∏
Li∈L

p
(
Li | mpG

(
Li

))×p(C),

Ï front-door model as an example: C= {X }, L= {A,Y } , M= {M }

ψ(t ) = ∑
X ,M ,Y

Y × p(M | a0, X )×∑
A

p(Y | M , A, X )p(A | X )p(X )
A M

X

Y
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Extension of the Front-door Model - Identification

Ï the EIF of E(Y a0 ), which is unique under nonparametrically saturated model
(Bhattacharya et al., 2022)

Uψt =
∑

Mi∈M

{ I(A = a0)∏
Li≺Mi p(Li | mpG (Li ))

× ( ∑
A∪{≻Mi }

Y × ∏
Vi∈L

{≻Mi }

p(Vi | mpG (Vi ))
∣∣

A=a0 if Vi∈M

− ∑
A∪{⪰Mi }

Y × ∏
Vi∈L

{⪰Mi }

p(Vi | mpG (Vi ))
∣∣

A=a0 if Vi∈M
)}

+ ∑
Li∈L\A

{∏
Mi≺Li p(Mi | mpG (Mi ))

∣∣
A=a0∏

Mi≺Li p(Mi | mpG (Mi ))
× (

∑
{≻Li }

Y × ∏
Vi≻Li

p(Vi | mpG (Vi ))
∣∣

A=a0 if Vi∈M

− ∑
{⪰Li }

Y × ∏
Vi⪰Li

p(Vi | mpG (Vi ))
∣∣

A=a0 if Vi∈M
)}

+ ∑
V \{A,C}

Y × ∏
Mi∈M

p
(
Mi | mpG

(
Mi

))∣∣
A=a0

× ∏
Li∈L\A

p
(
Li | mpG

(
Li

))−ψ(t ),
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Extension of the Front-door Model - Estimation

Ï plugin estimator: τ : A → Z1 →···→ Zk → Y

ψ(t ) = E (I(A = a0)Y )+E
{
E
[
· · ·E

[
µ | mp−A

G (Zk ), aZk

]
︸ ︷︷ ︸

Bk

· · · | mp−A
G (Z1), aZ1

]
︸ ︷︷ ︸

B1

}
,

where aZk
= a0 if Zk ∈M and = 1−a0 if Zk ∈ L.

Ï onestep estimator

Q = {µ,π,B1, · · · ,Bk , f r
Z1

, · · · , f r
Zk

}, f r
Zk

=
p(Zk | mp−A

G
(Zk ), aZk

)

p(Zk | mp−A
G

(Zk ),1−aZk
)

Ï TMLE estimator
order of updating nuisances: π(t ), µ(t ),B (t )

k , · · · , B (t )
1 , · · ·
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Simulations

We conducted extensive simulation studies, under various types of mediators (binary,
continuous, multivariate):

Ï Confirming theoretical properties of our proposed estimators.

Ï Comparing TMLE vs. one-step in settings with weak overlap (near positivity
violations).

Ï Performances under misspecified parametric models vs. flexible estimation (using
a super learner).

Ï Impact of cross-fitting on proposed estimators (using random forests).
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Open-source package and software

Ï fdtmle package in R
⋄ Conducting causal inference using the front-door criterion
⋄ https://github.com/annaguo-bios/fdtmle

Ï ADMGtmle package in R
⋄ Conducting causal inference in graphical models with unmeasured variables via the

extension of the front-door criterion
⋄ https://github.com/annaguo-bios/ADMGtmle
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Concluding Remarks

Summary: We proposed an estimation scheme for ACE using onestep and TMLE
estimator that avoids density estimation based on the front-door model and its
extension.

Future work
Ï Assumption violation and sensitivity analysis

Ï Extension to semiparametric graphical models that encodes regular independence
constrain and/or interventional constrain (Verma constrain)

Ï Extension to graphical models that can not be identified via either backdoor
criterion or front-door criterion
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Appendix - Regularity conditions and Donsker

For a TMLE ψ2(Q̂∗) of ψ(Q),

ψ(Q̂∗)−ψ(Q) = PnΦ(Q)−PnΦ(Q̂∗)+ (Pn −P )
{
Φ(Q̂∗)−Φ(Q)

}+R2(Q̂∗,Q) .

In order to establish asymptotic linearity of the TMLE, we will require
(A1) Donsker estimates: Φ(Q̂∗)−Φ(Q) falls in a P-Donsker class with probability
tending to 1 ;

(A2) L2(P )-consistent influence function estimates: P {Φ(Q̂∗)−Φ(Q)}2 = oP (1) ;

(A3) Successful targeting of nuisance parameters: PnΦ(Q̂∗) = oP (n−1/2) .

(A4) Bounded nuisance estimates: for all a,m, x, π̂∗(a | x) > δ1 for some δ1 > 0
and λ̂(a | m, x) > δ2 for some δ2 > 0.
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Appendix - Simulation1

Front-door model with bivariate mediator M
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Appendix - Simulation2
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Appendix - Simulation3
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Appendix - Simulation4
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