Targeted Machine Learning for Average Causal Effect Estimation Using the Front-Door Functional and its Extensions

Anna Guo

Department of Biostatistics and Bioinformatics Rollins School of Public Health Emory University

R anna.guo@emory.edu

In collaborations with: David Benkeser (Emory), Razieh Nabi (Emory)

R packages

- \blacktriangleright fdtmle
- \blacktriangleright ADMGtmle

(Front-door Model)

R packages

- \blacktriangleright fdtmle
- \blacktriangleright ADMGtmle

(Front-door Model)

(Extension of Front-door model)

(Extension of Front-door model)

R packages

- \blacktriangleright fdtmle
- \blacktriangleright ADMGtmle

(Front-door Model)

(Extension of Front-door model)

(Extension of Front-door model)

R packages

- \blacktriangleright fdtmle
- \blacktriangleright ADMGtmle

Functionalities

- \blacktriangleright Identification
- \triangleright Estimation: doubly robust onestep & TMLE estimators
- \blacktriangleright Efficiency & Asymptotic Behavior

1. Objective: evaluate the causal effect of vaccine on Covid-19 incidence. Δ verage Causal Effect: $\mathbb{E}(Y^{a=1}) - \mathbb{E}(Y^{a=0}),$ Target Parameter: $\psi := \mathbb{E}\left[Y^{a_0}\right], a_0 \in \{0,1\}$

- 1. Objective: evaluate the causal effect of vaccine on Covid-19 incidence. Δ verage Causal Effect: $\mathbb{E}(Y^{a=1}) - \mathbb{E}(Y^{a=0}),$ Target Parameter: $\psi := \mathbb{E}\left[Y^{a_0}\right], a_0 \in \{0,1\}$
- 2. Challenge: presence of unmeasured confounders *U*.

- 1. Objective: evaluate the causal effect of vaccine on Covid-19 incidence. Average Causal Effect: $\mathbb{E}(Y^{a=1}) - \mathbb{E}(Y^{a=0})$, Target Parameter: $\psi := \mathbb{E}\left[Y^{a_0}\right]$, $a_0 \in \{0,1\}$
- 2. Challenge: presence of unmeasured confounders *U*.
- 3. **Solution:** presence of mediator(s) $M \implies$ front-door model [\(Pearl, 1995\)](#page-44-0)

Identification Assumptions:

- 1. No direct effect: $Y^{a,m} = Y^m$, $\forall a, m$;
- 2. Conditional ignorability: $M^a \perp A \mid X \& Y^m \perp M \mid A, X;$
- 3. Consistency: $M^a = M$ when $A = a \& Y^m = Y$ when $M = m$; (Encoded assumptions)
- 4. Positivity: $P(A = 1 | X = x) > 0$, $P(M = m | A = a, X = x) > 0$, $\forall x$ with $P(X = x) > 0$

Identification Assumptions:

- 1. No direct effect: $Y^{a,m} = Y^m$, $\forall a, m$;
- 2. Conditional ignorability: $M^a \perp A \mid X \& Y^m \perp M \mid A, X;$
- 3. Consistency: $M^a = M$ when $A = a \& Y^m = Y$ when $M = m$; (Encoded assumptions)
- 4. Positivity: $P(A=1 | X=x) > 0$, $P(M=m | A=a, X=x) > 0$, $\forall x$ with $P(X=x) > 0$

Identification functional:

$$
\psi(P) = \iint \sum_{a=0}^{1} \underbrace{\mathbb{E}(Y \mid m, a, x)}_{\mu(m, a, x)} \underbrace{p(a \mid x)}_{\pi(a \mid x)} \underbrace{p(m \mid a_0, x)}_{f_M(m \mid a_0, x)} \underbrace{p(x)}_{p_X(x)} dm \, dx \quad \text{(target estimand)}.
$$

The above functional depends on the following nuisance parameters:

► outcome regression: $E[Y | m, a, x]$, denoted by $\mu(m, a, x)$

Identification Assumptions:

- 1. No direct effect: $Y^{a,m} = Y^m$, $\forall a, m$;
- 2. Conditional ignorability: $M^a \perp A \mid X \& Y^m \perp M \mid A, X;$
- 3. Consistency: $M^a = M$ when $A = a \& Y^m = Y$ when $M = m$; (Encoded assumptions)
- 4. Positivity: $P(A=1 | X=x) > 0$, $P(M=m | A=a, X=x) > 0$, $\forall x$ with $P(X=x) > 0$

Identification functional:

$$
\psi(P) = \iint \sum_{a=0}^{1} \underbrace{\mathbb{E}(Y \mid m, a, x)}_{\mu(m, a, x)} \underbrace{p(a \mid x)}_{\pi(a \mid x)} \underbrace{p(m \mid a_0, x)}_{f_M(m \mid a_0, x)} \underbrace{p(x)}_{p_X(x)} dm \, dx \quad \text{(target estimand)}.
$$

The above functional depends on the following nuisance parameters:

- ► outcome regression: $E[Y | m, a, x]$, denoted by $\mu(m, a, x)$
- propensity score: $p(a | x)$, denoted by $\pi(a|x)$

Identification Assumptions:

- 1. No direct effect: $Y^{a,m} = Y^m$, $\forall a, m$;
- 2. Conditional ignorability: $M^a \perp A \mid X \& Y^m \perp M \mid A, X;$
- 3. Consistency: $M^a = M$ when $A = a \& Y^m = Y$ when $M = m$; (Encoded assumptions)
- 4. Positivity: $P(A=1 | X=x) > 0$, $P(M=m | A=a, X=x) > 0$, $\forall x$ with $P(X=x) > 0$

Identification functional:

$$
\psi(P) = \iint \sum_{a=0}^{1} \underbrace{\mathbb{E}(Y \mid m, a, x)}_{\mu(m, a, x)} \underbrace{p(a \mid x)}_{\pi(a \mid x)} \underbrace{p(m \mid a_0, x)}_{f_M(m \mid a_0, x)} \underbrace{p(x)}_{p_X(x)} dm \, dx \quad \text{(target estimand)}.
$$

The above functional depends on the following nuisance parameters:

- ► outcome regression: $E[Y | m, a, x]$, denoted by $\mu(m, a, x)$
- **F** propensity score: $p(a | x)$, denoted by $\pi(a|x)$
- \triangleright mediator density: $p(m | a_0, x)$, denoted by $f_M(m | a_0, x)$

Identification Assumptions:

- 1. No direct effect: $Y^{a,m} = Y^m$, $\forall a, m$;
- 2. Conditional ignorability: $M^a \perp A \mid X \& Y^m \perp M \mid A, X;$
- 3. Consistency: $M^a = M$ when $A = a \& Y^m = Y$ when $M = m$; (Encoded assumptions)
- 4. Positivity: $P(A=1 | X=x) > 0$, $P(M=m | A=a, X=x) > 0$, $\forall x$ with $P(X=x) > 0$

Identification functional:

$$
\psi(P) = \iint \sum_{a=0}^{1} \underbrace{\mathbb{E}(Y \mid m, a, x)}_{\mu(m, a, x)} \underbrace{p(a \mid x)}_{\pi(a \mid x)} \underbrace{p(m \mid a_0, x)}_{f_M(m \mid a_0, x)} \underbrace{p(x)}_{p_X(x)} dm \, dx \quad \text{(target estimand)}.
$$

The above functional depends on the following nuisance parameters:

- \triangleright outcome regression: $F[Y | m, a, x]$, denoted by $\mu(m, a, x)$
- propensity score: $p(a|x)$, denoted by $\pi(a|x)$
- \triangleright mediator density: $p(m | a_0, x)$, denoted by $f_M(m | a_0, x)$
- \triangleright covariates density: $p(x)$, denoted by $p_X(x)$.

Let $Q = \{ \mu, \pi, f_M, p_X \}$, we can write $\psi(P)$ as $\psi(Q)$.

Estimation - Plugin Estimator

$$
\psi(Q) = \iint \sum_{a=0}^{1} \mu(m, a, x) \ \pi(a \mid x) \ f_M(m \mid a_0, x) \ p_X(x) \ dm \ dx \quad \text{(ID functional)}
$$

$$
\psi(\widehat{Q}) = \frac{1}{n} \sum_{i=1}^{n} \sum_{m} \sum_{a=0}^{1} \widehat{\mu}(m, a, X_i) \ \widehat{\pi}(a \mid X_i) \ \widehat{f}_M(m \mid a_0, X_i) \quad \text{(plugin estimator)}.
$$

Estimation - Plugin Estimator

$$
\psi(Q) = \iint \sum_{a=0}^{1} \mu(m, a, x) \ \pi(a \mid x) \ f_M(m \mid a_0, x) \ p_X(x) \ dm \ dx \quad \text{(ID functional)}
$$

$$
\psi(\widehat{Q}) = \frac{1}{n} \sum_{i=1}^{n} \sum_{m} \sum_{a=0}^{1} \widehat{\mu}(m, a, X_i) \ \widehat{\pi}(a \mid X_i) \ \widehat{f}_M(m \mid a_0, X_i) \quad \text{(plugin estimator)}.
$$

Limitations:

 \blacktriangleright density estimation and numeric integration

Estimation - Plugin Estimator

$$
\psi(Q) = \iint \sum_{a=0}^{1} \mu(m, a, x) \ \pi(a \mid x) \ f_M(m \mid a_0, x) \ p_X(x) \ dm \ dx \quad \text{(ID functional)}
$$

$$
\psi(\widehat{Q}) = \frac{1}{n} \sum_{i=1}^{n} \sum_{m} \sum_{a=0}^{1} \widehat{\mu}(m, a, X_i) \ \widehat{\pi}(a \mid X_i) \ \widehat{f}_M(m \mid a_0, X_i) \quad \text{(plugin estimator)}.
$$

Limitations:

- \blacktriangleright density estimation and numeric integration
- \blacktriangleright first-order bias: $ψ(\widehat{Q}) = ψ(Q) PΦ(\widehat{Q})$ first-order bias remainder term + $R_2(\widehat{Q}, Q)$ (von Mises Expansion).

where $\Phi(Q)$ is the **efficient influence function** of $\psi(Q)$, which is unique under nonparametric models, such as the front-door model.

 \triangleright Correction for the first-order bias yields the onestep estimator

$$
\psi(\widehat{Q}) = \psi(Q) - P\Phi(\widehat{Q}) + R_2(\widehat{Q}, Q) \quad \Longrightarrow \quad \psi^+(\widehat{Q}) = \psi(\widehat{Q}) + P_n\Phi(\widehat{Q}).
$$

 \blacktriangleright [Fulcher et al. \(2020\)](#page-44-1) first derived $\Phi(Q)$, and suggested the following estimator:

$$
\psi^+(\hat{Q}) = \frac{1}{n} \sum_{i=1}^n \frac{\hat{f}_M(M_i | a_0, X_i)}{\hat{f}_M(M_i | A_i, X_i)} \{Y_i - \hat{\mu}(M_i, A_i, X_i)\}\n+ \frac{\mathbb{I}(A_i = a_0)}{\hat{\pi}(a_0 | X_i)} \{ \sum_{i} \hat{\mu}(M_i, a, X_i) \hat{\pi}(a | X_i) - \int \sum_{a} \hat{\mu}(M_i, a, X_i) \hat{\pi}(a | X_i) \hat{f}_M(m | a_0, X_i) dm \}\n+ \int \hat{\mu}(m, A_i, X_i) \hat{f}_M(m | a_0, X_i) dm
$$

► Nuisance estimates: $\hat{Q} = {\{\hat{\mu}, \hat{\pi}, \hat{f}_M\}}$, while p_X is emiprically evaluated
► Double robustness: $w^+(\hat{O})$ is a consistent estimator if either \hat{f}_M or $\{$

Double robustness: $\psi^+(\widehat{Q})$ is a consistent estimator if either \widehat{f}_M or $\{\widehat{\mu},\widehat{\pi}\}$ is correctly specified in parametric models.

Limitations

- \triangleright The proposed onestep estimator requires estimating the mediator density *f^M* (*M*|*A*,*X*). A daunting task under large collection of mediators of different types.
- \triangleright Onestep estimator may yield estimates that is outside of the range of the target parameter, especially for binary outcome.
- \triangleright The asymptotic behavior of this one-step estimator, along with its second-order remainder term, requires additional investigation.

Limitations

- \triangleright The proposed onestep estimator requires estimating the mediator density *f^M* (*M*|*A*,*X*). A daunting task under large collection of mediators of different types.
- \triangleright Onestep estimator may yield estimates that is outside of the range of the target parameter, especially for binary outcome.
- \triangleright The asymptotic behavior of this one-step estimator, along with its second-order remainder term, requires additional investigation.

Solutions

- Re-parameterize $\psi(Q)$ to avoid direct density estimation
- \triangleright Adopt Targeted Minimum Loss Based Estimation (TMLE) [\(Van der Laan et al.,](#page-44-2) [2011\)](#page-44-2)

Estimation - Onestep Estimator

Nuisances that involving the conditional density *f^M* :

$$
\psi^{+}(\hat{Q}) = \frac{1}{n} \sum_{i=1}^{n} \frac{\hat{f}_{M}(M_{i} | a_{0}, X_{i})}{\hat{f}_{M}(M_{i} | A_{i}, X_{i})} \{Y_{i} - \hat{\mu}(M_{i}, A_{i}, X_{i})\} \n+ \frac{\mathbb{I}(A_{i} = a_{0})}{\hat{\pi}(a_{0} | X_{i})} \{\sum_{a} \hat{\mu}(M_{i}, a, X_{i}) \hat{\pi}(a | X_{i}) - \int \sum_{a} \hat{\mu}(M_{i}, a, X_{i}) \hat{\pi}(a | X_{i}) \hat{f}_{M}(m | a_{0}, X_{i}) dm\} \n+ \int \hat{\mu}(m, A_{i}, X_{i}) \hat{f}_{M}(m | a_{0}, X_{i}) dm
$$

 \blacktriangleright Mediator density ratio estimation via Bayes rule

$$
f'_{M}(m, a, x) = \frac{f_{M}(m | a_0, x)}{f_{M}(m | a, x)} = \frac{\lambda(a_0 | x, m)}{\lambda(a | x, m)} \times \frac{\pi(a | x)}{\pi(a_0 | x)},
$$

where $\lambda(a | x, m) = p(A = a | X = x, M = m)$.

Estimation - Onestep Estimator

Nuisances that involving the conditional density *f^M* :

$$
\psi^{+}(\hat{Q}) = \frac{1}{n} \sum_{i=1}^{n} \frac{\hat{f}_{M}(M_{i} | a_{0}, X_{i})}{\hat{f}_{M}(M_{i} | A_{i}, X_{i})} \{Y_{i} - \hat{\mu}(M_{i}, A_{i}, X_{i})\} \n+ \frac{\mathbb{I}(A_{i} = a_{0})}{\hat{\pi}(a_{0} | X_{i})} \left\{ \sum_{a} \hat{\mu}(M_{i}, a, X_{i}) \hat{\pi}(a | X_{i}) - \underbrace{\int \sum_{a} \hat{\mu}(M_{i}, a, X_{i}) \hat{\pi}(a | X_{i}) \hat{f}_{M}(m | a_{0}, X_{i}) dm}_{\mathbb{E}(\xi(M_{i}, X_{i}) | a_{0}, X_{i})} \right\} \n+ \int \hat{\mu}(m, A_{i}, X_{i}) \hat{f}_{M}(m | a_{0}, X_{i}) dm
$$

$$
\blacktriangleright
$$
 Mediator density ratio estimation via **Bayes rule**

$$
f_M^r(m, a, x) = \frac{f_M(m \mid a_0, x)}{f_M(m \mid a, x)} = \frac{\lambda(a_0 \mid x, m)}{\lambda(a \mid x, m)} \times \frac{\pi(a \mid x)}{\pi(a_0 \mid x)},
$$

where $\lambda(a \mid x, m) = p(A = a \mid X = x, M = m)$.

 \triangleright **Sequential regression** for estimating *γ*(*x*): *γ*(*x*) = $E(ξ(m, x) | a_0, x)$

Estimation - Onestep Estimator

Nuisances that involving the conditional density *f^M* :

$$
\psi^{+}(\hat{Q}) = \frac{1}{n} \sum_{i=1}^{n} \frac{\hat{f}_{M}(M_{i} | a_{0}, X_{i})}{\hat{f}_{M}(M_{i} | A_{i}, X_{i})} \{Y_{i} - \hat{\mu}(M_{i}, A_{i}, X_{i})\}
$$

+
$$
\frac{\mathbb{I}(A_{i} = a_{0})}{\hat{\pi}(a_{0} | X_{i})} \{ \sum_{a} \hat{\mu}(M_{i}, a, X_{i}) \hat{\pi}(a | X_{i}) - \int \sum_{a} \hat{\mu}(M_{i}, a, X_{i}) \hat{\pi}(a | X_{i}) \hat{f}_{M}(m | a_{0}, X_{i}) dm \}
$$

+
$$
\underbrace{\int \hat{\mu}(m, A_{i}, X_{i}) \hat{f}_{M}(m | a_{0}, X_{i}) dm}_{\kappa_{a} = \mathbb{E}[\mu(M_{i}, a, X_{i}) | A = a_{0}, X], \text{ for } a \in \{0, 1\}}
$$

 \triangleright Mediator density ratio estimation via Bayes rule

$$
f_M^r(m, a, x) = \frac{f_M(m \mid a_0, x)}{f_M(m \mid a, x)} = \frac{\lambda(a_0 \mid x, m)}{\lambda(a \mid x, m)} \times \frac{\pi(a \mid x)}{\pi(a_0 \mid x)},
$$

where $\lambda(a \mid x, m) = p(A = a \mid X = x, M = m)$.

- ► Sequential regression for estimating $γ(x)$: $γ(x) = ℤ(\xi(m, x) | a_0, x)$
- **Sequential regression** for estimating $n(x)$

$$
\eta(a,x) = \int \mu(m,a,x) f_{M|A,X}(m \mid a_0, x) dm = A\kappa_1(X) + (1-A)\kappa_0(X).
$$

 \blacktriangleright Reparameterized onestep estimator

$$
\psi_2^+(\hat{Q}) = \frac{1}{n} \sum_{i=1}^n \left[\hat{f}_M^r(M_i, A_i, X_i) \{ Y_i - \hat{\mu}(M_i, A_i, X_i) \} + \frac{\mathbb{I}(A_i = a_0)}{\hat{\pi}(a_0 | X_i)} \{ \hat{\xi}(M_i, X_i) - \hat{\gamma}(X_i) \} + \{ \hat{\kappa}_1(X_i) - \hat{\kappa}_0(X_i) \} \{ A_i - \hat{\pi}(1 | X_i) \} + \hat{\gamma}(X_i) \right].
$$
\n(second one-step estimator)

new set of nuisance parameters: $Q = {\mu, \pi, p_X, f_M^r, \gamma, \kappa}$ f_M } or {*µ*,*π*,*p^X* ,*λ*,*γ*,*κ* f_M }. \blacktriangleright Reparameterized onestep estimator

$$
\psi_2^+(\hat{Q}) = \frac{1}{n} \sum_{i=1}^n \left[\hat{f}_M^r (M_i, A_i, X_i) \{ Y_i - \hat{\mu}(M_i, A_i, X_i) \} + \frac{\mathbb{I}(A_i = a_0)}{\hat{\pi}(a_0 | X_i)} \{ \hat{\xi}(M_i, X_i) - \hat{\gamma}(X_i) \} + \{ \hat{\kappa}_1(X_i) - \hat{\kappa}_0(X_i) \} \{ A_i - \hat{\pi}(1 | X_i) \} + \hat{\gamma}(X_i) \right].
$$
\n(second one-step estimator)

new set of nuisance parameters: $Q = {\mu, \pi, p_X, f_M^r, \gamma, \kappa}$ f_M } or {*µ*,*π*,*p^X* ,*λ*,*γ*,*κ* f_M }.

► The onestep estimator resolves the first-order bias by adding $P_n\Phi(\widehat{Q})$ on top of the plugin estimator.

 \blacktriangleright Reparameterized onestep estimator

$$
\psi_2^+(\hat{Q}) = \frac{1}{n} \sum_{i=1}^n \left[\hat{f}_M^r(M_i, A_i, X_i) \{ Y_i - \hat{\mu}(M_i, A_i, X_i) \} + \frac{\mathbb{I}(A_i = a_0)}{\hat{\pi}(a_0 | X_i)} \{ \hat{\xi}(M_i, X_i) - \hat{\gamma}(X_i) \} + \{ \hat{\kappa}_1(X_i) - \hat{\kappa}_0(X_i) \} \{ A_i - \hat{\pi}(1 | X_i) \} + \hat{\gamma}(X_i) \right].
$$
\n(second one-step estimator)

new set of nuisance parameters: $Q = {\mu, \pi, p_X, f_M^r, \gamma, \kappa}$ f_M } or {*µ*,*π*,*p^X* ,*λ*,*γ*,*κ* f_M }.

- ► The onestep estimator resolves the first-order bias by adding $P_n\Phi(\widehat{Q})$ on top of the plugin estimator.
- \blacktriangleright Unaddressed: estimates that fall out of the parameter space.

► Update $\hat{O} \implies \hat{O}^*$ s.t $P_n \Phi(\hat{O}^*) \approx 0$. **TMLE estimator** is defined as $\psi_2(\hat{O}^*)$

The TMLE procedure

- 1. Obtain an initial estimate of the nuisances $\hat{Q} = {\hat{\mu}, \hat{\pi}, \cdots}$
- 2. loss functions $L: Q \rightarrow R$ parametric submodels \widehat{Q}_{ϵ} s.t

 $(C1)$ $\hat{Q} = \hat{Q}_{\epsilon=0}$ $(C2)$ *Q* = argmin_{$\tilde{Q} \in \mathcal{M}_Q$ $\int L(\tilde{Q}) dQ$} $\left(\text{C3}\right) \left. \frac{\partial}{\partial \epsilon} L\left(\widehat{Q}_{\epsilon}\right) \right|_{\epsilon=0} = \Phi(\widehat{Q})$

Theorem (Asymptotic linearity of $\psi_2(\hat{Q}^*))$

Assume the nuisance estimates $\hat{Q}^{\star} = (\hat{\mu}^*, \hat{\pi}^*, \hat{\gamma}^*, \hat{\kappa}, \hat{\lambda})$ have the following $L^2(P)$ rates of convergence:

$$
||\hat{\pi}^* - \pi|| = o_P(n^{-\frac{1}{k}}), \quad ||\hat{\mu}^* - \mu|| = o_P(n^{-\frac{1}{q}})
$$

$$
||\hat{\gamma}^* - \gamma|| = o_P(n^{-\frac{1}{j}}), \quad ||\hat{\kappa}_a - \kappa_a|| = o_P(n^{-\frac{1}{\ell}}), \quad ||\hat{\lambda} - \lambda|| = o_P(n^{-\frac{1}{d}}).
$$

The TMLE $\psi_2(\hat{Q}^*)$ is asymptotically linear if the following condition as well as the [Donsker condition](#page-45-0) are satisfied.

$$
\frac{1}{q} + \frac{1}{k} \ge \frac{1}{2}, \quad \frac{1}{d} + \frac{1}{q} \ge \frac{1}{2}, \quad \frac{1}{k} + \frac{1}{j} \ge \frac{1}{2}, \quad \frac{1}{k} + \frac{1}{\ell} \ge \frac{1}{2}.
$$

Theorem (Asymptotic linearity of $\psi_2(\hat{Q}^*))$

Assume the nuisance estimates $\hat{Q}^{\star} = (\hat{\mu}^*, \hat{\pi}^*, \hat{\gamma}^*, \hat{\kappa}, \hat{\lambda})$ have the following $L^2(P)$ rates of convergence:

$$
||\hat{\pi}^* - \pi|| = o_P(n^{-\frac{1}{k}}), \quad ||\hat{\mu}^* - \mu|| = o_P(n^{-\frac{1}{q}})
$$

$$
||\hat{\gamma}^* - \gamma|| = o_P(n^{-\frac{1}{j}}), \quad ||\hat{\kappa}_a - \kappa_a|| = o_P(n^{-\frac{1}{\ell}}), \quad ||\hat{\lambda} - \lambda|| = o_P(n^{-\frac{1}{d}}).
$$

The TMLE $\psi_2(\hat{Q}^*)$ is asymptotically linear if the following condition as well as the [Donsker condition](#page-45-0) are satisfied.

$$
\frac{1}{q} + \frac{1}{k} \ge \frac{1}{2}, \quad \frac{1}{d} + \frac{1}{q} \ge \frac{1}{2}, \quad \frac{1}{k} + \frac{1}{j} \ge \frac{1}{2}, \quad \frac{1}{k} + \frac{1}{\ell} \ge \frac{1}{2}.
$$

 \triangleright Embrace a larger set of machine learning & statistical models

Theorem (Asymptotic linearity of $\psi_2(\hat{Q}^*))$

Assume the nuisance estimates $\hat{Q}^{\star} = (\hat{\mu}^*, \hat{\pi}^*, \hat{\gamma}^*, \hat{\kappa}, \hat{\lambda})$ have the following $L^2(P)$ rates of convergence:

$$
||\hat{\pi}^* - \pi|| = o_P(n^{-\frac{1}{k}}), \quad ||\hat{\mu}^* - \mu|| = o_P(n^{-\frac{1}{q}})
$$

$$
||\hat{\gamma}^* - \gamma|| = o_P(n^{-\frac{1}{j}}), \quad ||\hat{\kappa}_a - \kappa_a|| = o_P(n^{-\frac{1}{\ell}}), \quad ||\hat{\lambda} - \lambda|| = o_P(n^{-\frac{1}{d}}).
$$

The TMLE $\psi_2(\hat{Q}^*)$ is asymptotically linear if the following condition as well as the [Donsker condition](#page-45-0) are satisfied.

$$
\frac{1}{q} + \frac{1}{k} \ge \frac{1}{2}, \quad \frac{1}{d} + \frac{1}{q} \ge \frac{1}{2}, \quad \frac{1}{k} + \frac{1}{j} \ge \frac{1}{2}, \quad \frac{1}{k} + \frac{1}{\ell} \ge \frac{1}{2}.
$$

- \triangleright Embrace a larger set of machine learning & statistical models
- \triangleright Cross-fitting as an alternative of Donsker condition.

Generalize front-door model to settings with multiple mediators that have different confounding behavior

Generalize front-door model to settings with multiple mediators that have different confounding behavior

 \triangleright primal fixability of *A*: no bidrected ↔ path from *A* to its children.

Generalize front-door model to settings with multiple mediators that have different confounding behavior

- \triangleright primal fixability of *A*: no bidrected ↔ path from *A* to its children.
- ► primal fixability of $A \Leftrightarrow$ identifiability of the causal effect of *A* on $V \setminus A$ [\(Tian and](#page-44-3) [Pearl, 2002\)](#page-44-3)

Generalize front-door model to settings with multiple mediators that have different confounding behavior

- **Example 1** primal fixability of *A*: no bidrected \leftrightarrow path from *A* to its children.
- ► primal fixability of $A \Leftrightarrow$ identifiability of the causal effect of *A* on $V \setminus A$ [\(Tian and](#page-44-3) [Pearl, 2002\)](#page-44-3)
- \blacktriangleright identification of $\mathbb{E}(Y^{a_0})$

$$
\psi(t) = \sum_{V \setminus A} Y \times \prod_{M_i \in \mathbb{M}} p\left(M_i \mid \text{mp}_{\mathscr{G}}\left(M_i\right)\right)\big|_{A = a_0} \times \sum_{A} \prod_{L_i \in \mathbb{L}} p\left(L_i \mid \text{mp}_{\mathscr{G}}\left(L_i\right)\right) \times p(\mathbb{C}),
$$

Generalize front-door model to settings with multiple mediators that have different confounding behavior

- \triangleright primal fixability of *A*: no bidrected ↔ path from *A* to its children.
- primal fixability of $A \leftrightarrow \mathbf{R}$ identifiability of the causal effect of A on $V \setminus A$ [\(Tian and](#page-44-3) [Pearl, 2002\)](#page-44-3)
- \blacktriangleright identification of $\mathbb{E}(Y^{a_0})$

$$
\psi(t) = \sum_{V \backslash A} Y \times \prod_{M_i \in \mathbb{M}} p\left(M_i \mid \text{mp}_{\mathcal{G}}\left(M_i\right)\right)\big|_{A = a_0} \times \sum_{A} \prod_{L_i \in \mathbb{L}} p\left(L_i \mid \text{mp}_{\mathcal{G}}\left(L_i\right)\right) \times p(\mathbb{C}),
$$

Front-door model as an example: $\mathbb{C} = \{X\}$, $\mathbb{L} = \{A, Y\}$, $\mathbb{M} = \{M\}$

 $\psi(t) = \sum$ $\sum_{X, M, Y} Y \times p(M \mid a_0, X) \times \sum_{A}$ *A p*(*Y* | *M*, *A*,*X*)*p*(*A* | *X*)*p*(*X*)

 \blacktriangleright the EIF of $\mathbb{E}(Y^{a_0})$, which is unique under nonparametrically saturated model [\(Bhattacharya et al., 2022\)](#page-44-4)

$$
U_{\psi_{t}} = \sum_{M_{i} \in \mathbb{M}} \left\{ \frac{\mathbb{I}(A = a_{0})}{\prod_{L_{i} \leq M_{i}} p(L_{i} \mid \text{mp}g(L_{i}))} \times \left(\sum_{A \cup \{> M_{i}\}} Y \times \prod_{V_{i} \in \mathbb{L}} p(V_{i} \mid \text{mp}g(V_{i})) \right)_{A = a_{0}} \text{ if } V_{i} \in \mathbb{M} \right\}
$$

$$
- \sum_{A \cup \{> M_{i}\}} Y \times \prod_{\{> i \in \mathbb{L}\}} p(V_{i} \mid \text{mp}g(V_{i})) \Big|_{A = a_{0}} \text{ if } V_{i} \in \mathbb{M} \right\}
$$

$$
+ \sum_{L_{i} \in \mathbb{L} \setminus A} \left\{ \frac{\prod_{M_{i} \leq L_{i}} p(M_{i} \mid \text{mp}g(M_{i})) \Big|_{A = a_{0}}}{\prod_{M_{i} \leq L_{i}} p(M_{i} \mid \text{mp}g(M_{i}))} \times \left(\sum_{\{> L_{i}\}} Y \times \prod_{V_{i} > L_{i}} p(V_{i} \mid \text{mp}g(V_{i})) \right) \Big|_{A = a_{0}} \text{ if } V_{i} \in \mathbb{M} \right\}
$$

$$
- \sum_{\{> L_{i}\}} Y \times \prod_{V_{i} \geq L_{i}} p(V_{i} \mid \text{mp}g(V_{i})) \Big|_{A = a_{0}} \text{ if } V_{i} \in \mathbb{M} \right\}
$$

$$
+ \sum_{V \setminus \{A, C\}} Y \times \prod_{M_{i} \in \mathbb{M}} p(M_{i} \mid \text{mp}g(M_{i})) \Big|_{A = a_{0}} \times \prod_{L_{i} \in \mathbb{L} \setminus A} p(L_{i} \mid \text{mp}g(L_{i})) - \psi(t),
$$

Extension of the Front-door Model - Estimation

▶ plugin estimator:
$$
\tau : A \to Z_1 \to \cdots \to Z_k \to Y
$$

$$
\psi(t) = E(\mathbb{I}(A = a_0)Y) + \mathbb{E}\Bigg\{\mathbb{E}\Bigg[\cdots \underbrace{\mathbb{E}\Bigg[\mu \mid \text{mp}_{g}^{-A}(Z_k), a_{Z_k}\Bigg]}_{B_k} \cdots \mid \text{mp}_{g}^{-A}(Z_1), a_{Z_1}\Bigg]\Bigg\},
$$

where $a_{Z_k} = a_0$ if $Z_k \in \mathbb{M}$ and $= 1 - a_0$ if $Z_k \in \mathbb{L}$.

 \blacktriangleright onestep estimator

$$
Q = \{ \mu, \pi, B_1, \cdots, B_k, f_{Z_1}^r, \cdots, f_{Z_k}^r \}, \quad f_{Z_k}^r = \frac{p(Z_k \mid \text{mp}_{\mathcal{G}}^{-A}(Z_k), a_{Z_k})}{p(Z_k \mid \text{mp}_{\mathcal{G}}^{-A}(Z_k), 1 - a_{Z_k})}
$$

\triangleright TMLE estimator

order of updating nuisances: $\pi^{(t)}$, $\mu^{(t)}$, $B_k^{(t)}$, \cdots , $B_1^{(t)}$, \cdots

We conducted extensive simulation studies, under various types of mediators (binary, continuous, multivariate):

- \triangleright [Confirming theoretical properties of our proposed estimators.](#page-46-0)
- \triangleright [Comparing TMLE vs. one-step in settings with weak overlap \(near positivity](#page-47-0) [violations\).](#page-47-0)
- \triangleright [Performances under misspecified parametric models vs. flexible estimation \(using](#page-48-0) [a super learner\).](#page-48-0)
- \blacktriangleright [Impact of cross-fitting on proposed estimators \(using random forests\).](#page-49-0)
- \blacktriangleright fdtmle package in R
	- [⋄] Conducting causal inference using the front-door criterion
	- [⋄] [https://github.com/annaguo-bios/fdtmle](#page-0-0)
- \triangleright ADMGtmle package in R
	- [⋄] Conducting causal inference in graphical models with unmeasured variables via the extension of the front-door criterion
	- [⋄] [https://github.com/annaguo-bios/ADMGtmle](#page-0-0)

Future work

 \triangleright Assumption violation and sensitivity analysis

Future work

- \triangleright Assumption violation and sensitivity analysis
- \triangleright Extension to semiparametric graphical models that encodes regular independence constrain and/or interventional constrain (Verma constrain)

Future work

- \triangleright Assumption violation and sensitivity analysis
- \triangleright Extension to semiparametric graphical models that encodes regular independence constrain and/or interventional constrain (Verma constrain)
- \triangleright Extension to graphical models that can not be identified via either backdoor criterion or front-door criterion

Targeted Machine Learning for Average Causal Effect Estimation Using the Front-Door Functional

Anna Guo,¹ David Benkeser¹ and Razieh Nabi^{1,*}

¹Department of Biostatistics and Bioinformatics. Rollins School of Public Health. Emory University. Atlanta, GA, USA

*Corresponding author, razieh.nabi@emorv.edu

(arXiv:2312.10234)

Q&A

Anna Guo, Ph.D. candidate (she/her/hers) Department of Biostatistics and Bioinformatics Emory University

- 7 [@AnnaGuo617](https://twitter.com/AnnaGuo617)
- R anna.guo@emory.edu
- <https://guoanna.com>
- Bhattacharya, R., Nabi, R., and Shpitser, I. (2022). Semiparametric inference for causal effects in graphical models with hidden variables. Journal of Machine Learning Research, 23(295):1–76.
- Fulcher, I. R., Shpitser, I., Marealle, S., and Tchetgen Tchetgen, E. J. (2020). Robust inference on population indirect causal effects: the generalized front door criterion. Journal of the Royal Statistical Society Series B: Statistical Methodology, 82(1):199–214.
- Pearl, J. (1995). Causal diagrams for empirical research. Biometrika, 82(4):669–688.
- Tian, J. and Pearl, J. (2002). A general identification condition for causal effects. In Aaai/iaai, pages 567–573.
- Van der Laan, M. J., Rose, S., et al. (2011). Targeted learning: causal inference for observational and experimental data, volume 4. Springer.

For a TMLE $\psi_2(\hat{Q}^*)$ of $\psi(Q)$,

$$
\psi(\hat Q^*) - \psi(Q) = P_n \Phi(Q) - P_n \Phi(\hat Q^*) + (P_n - P) \left\{\Phi(\hat Q^*) - \Phi(Q)\right\} + R_2(\hat Q^*,Q) \ .
$$

In order to establish asymptotic linearity of the TMLE, we will require

- (A1) *Donsker estimates*: $\Phi(\hat{O}^*) - \Phi(O)$ falls in a *P*-Donsker class with probability tending to 1 ;
- (A2) $L^2(P)$ -consistent influence function estimates: $P{\lbrace \Phi(\hat{Q}^*) \Phi(Q) \rbrace}^2 = o_P(1)$;
- (A3) Successful targeting of nuisance parameters: $P_n\Phi(\hat{Q}^*) = o_P(n^{-1/2})$.

(A4) *Bounded nuisance estimates*: for all $a, m, x, \hat{\pi}^*(a | x) > \delta_1$ for some $\delta_1 > 0$ and $\hat{\lambda}(a \mid m, x) > \delta_2$ for some $\delta_2 > 0$.

Appendix - Simulation1

Front-door model with bivariate mediator *M*

Appendix - Simulation2

		Univariate Binary			Univariate Continuous		Bivariate Continuous					
	$\psi_1(\hat{Q}^{\star})$	$\psi_1^+(\hat{Q})$	$\psi_1(\hat{Q}^{\star})$	$\psi_1^+(\hat{Q})$	$\psi_{2a}(\hat{Q}^{\star})$	$\psi_{2a}^{+}(\hat{Q})$	$\psi_{2b}(\hat{Q}^\star)$	$\psi_{2h}^{+}(\hat{Q})$	$\psi_{2a}(\hat{Q}^{\star})$	$\psi_{2a}^{+}(\hat{Q})$	$\psi_{2b}(\hat{Q}^{\star})$	$\psi_{2b}^{+}(\hat{Q})$
$n = 500$												
Bias	-0.004	-0.010	-0.022	-0.004	-0.002	0.000	-0.002	-0.012	-0.012	0.153	-0.031	-0.065
SD	0.078	0.418	0.135	0.799	0.432	2.524	0.405	1.191	0.610	5.096	0.495	1.447
MSE	0.006	0.174	0.019	0.638	0.187	6.363	0.164	1.418	0.372	25.965	0.245	2.097
CI coverage	91.2%	95.4%	96.6%	95.2%	98.4%	97.1%	98.3%	97.3%	99.4%	98.2%	98.5%	97.7%
CI width	0.317	0.854	1.533	1.531	4.764	5.705	2.720	3.447	10.115	12.100	2.854	3.834
$n = 1000$												
Bias	0.000	-0.002	-0.012	-0.018	-0.004	0.041	-0.003	0.020	-0.015	-0.078	-0.003	-0.001
SD	0.056	0.207	0.101	0.470	0.342	1.394	0.338	0.787	0.389	1.841	0.333	0.716
MSE	0.003	0.043	0.010	0.221	0.117	1.942	0.114	0.619	0.152	3.391	0.111	0.513
CI coverage	92.1%	95.4%	96%	94.3%	98.5%	96.3%	98%	97.1%	99.4%	97.1%	99%	96.4%
CI width	0.240	0.492	0.931	0.930	3.071	3.460	1.861	2.178	4.809	5.365	1.852	2.136
$n = 2000$												
Bias	0.000	-0.002	-0.005	0.010	0.009	0.010	0.009	0.014	0.003	-0.006	0.008	0.022
SD	0.039	0.114	0.068	0.239	0.238	0.699	0.243	0.481	0.319	0.980	0.276	0.489
MSE	0.001	0.013	0.005	0.057	0.057	0.488	0.059	0.231	0.102	0.959	0.076	0.240
CI coverage	94.1%	96.2%	97.4%	96%	99.2%	96.9%	98.7%	96%	99.2%	96.9%	98.6%	97.4%
CI width	0.175	0.318	0.602	0.602	1.960	2.092	1.321	1.454	2.989	3.209	1.351	1.504

Table 1. Comparative analysis of TMLEs and one-step estimators under violation of the positivity assumption.

	TMLEs									One-step estimators									
	Univariate Binary			Univariate Continuous						Univariate Binary		<i>Univariate Continuous</i>							
	$\psi_1(\hat{Q}^{\star})$		$\psi_{2a}(\hat{Q}^{\star})$			$\psi_{2b}(\hat{Q}^*)$			$\psi_1^+(\hat{Q})$			$\psi_{2a}^{+}(\hat{Q})$			$\psi^{+}_{2b}(\hat{Q})$				
	Linear	SL	CF	Linear	SL	CF	Linear	SL	CF	Linear	SL.	CF	Linear	SL	CF	Linear	SL	CF	
$n = 500$																			
Bias			$-0.016 - 0.001 - 0.010$		$-0.081 - 0.020 - 0.037$				$-0.081 - 0.016 - 0.038$			$-0.017 - 0.008 - 0.005$		$-0.081 - 0.021 - 0.039$			$-0.081 - 0.016 - 0.037$		
SD	0.043	0.050	0.071	0.099	0.123	0.128	0.099	0.116	0.123	0.043	0.048	0.183	0.099	0.128	0.133	0.099	0.115	0.126	
MSE	0.002	0.003	0.005	0.016	0.016	0.018	0.016	0.014 0.016		0.002	0.002	0.033	0.016	0.017	0.019	0.016	0.014	0.017	
CI coverage			84.2% 83.2% 82.8%	85.5%	97%	96.8%			85.5% 91.5% 91.8%	83.1%	80%	81.5%		85.5% 96.8% 96.5%			85.5% 91.4% 91.4%		
CI width	0.161		0.154 0.172	0.398	0.567	0.596	0.399	0.398	0.444	0.158	0.143	0.176	0.399	0.560	0.589	0.399	0.397	0.444	
$n = 1000$																			
Bias		-0.018 -0.003 -0.008		-0.081	$-0.012 - 0.027$				$-0.081 - 0.009 - 0.023$		-0.018 -0.006 -0.008			$-0.081 - 0.013 - 0.029$			$-0.081 - 0.009 - 0.023$		
SD	0.030	0.035	0.035	0.074	0.088	0.089	0.074	0.088	0.089	0.030	0.034	0.035	0.074	0.092	0.092	0.074	0.087	0.089	
MSE	0.001	0.001	0.001	0.012	0.008	0.009	0.012	0.008	0.008	0.001	0.001	0.001	0.012	0.009	0.009	0.012	0.008	0.008	
CI coverage			81.5% 87.3% 85.3%		74.6% 98.2% 97.2%				74.6% 90.1% 89.9%			80.8% 83.6% 84.2%		74.6% 96.8% 96.6%			74.6% 90.3% 89.8%		
CI width	0.111		0.113 0.117	0.282		0.403 0.416	0.282	0.293	0.311	0.109	0.106 0.110		0.282	0.400	0.412	0.282	0.292	0.310	
$n = 2000$																			
Bias			-0.018 -0.002 -0.005				-0.084 -0.008 -0.019 -0.084 -0.005 -0.016					-0.018 -0.004 -0.005		$-0.084 - 0.008 - 0.018$			$-0.084 - 0.005 - 0.016$		
SD	0.020	0.023	0.024	0.050	0.060	0.059	0.050	0.060	0.059	0.020	0.023	0.023	0.050	0.062	0.061	0.050	0.060	0.059	
MSE	0.001	0.001	0.001	0.010	0.004	0.004	0.010	0.004	0.004	0.001	0.001	0.001	0.010	0.004	0.004	0.010	0.004	0.004	
CI coverage			76.9% 89.7% 88.4%	60.5%	97.9%	98%			60.4% 92.2% 92.5%			75.4% 87.2% 87.4%		60.5% 97.3% 97.6%			60.4% 92.1% 92.3%		
CI width	0.077	0.083	0.084	0.198	0.288	0.293	0.198	0.214 0.222		0.076	0.079	0.081	0.198	0.286	0.291	0.198	0.213	0.221	

Table 2. Comparative analysis of TMLEs and one-step estimators under model misspecifications.

Appendix - Simulation4

Table 3. Comparative analysis for the impact of cross-fitting on TMLEs and one-step estimators in conjunction with the use of random forests. RF refers to random forest with 500 trees and a minimum node size of 5 for a continuous variable and 1 for binary, and CF denotes random forest with cross fitting using 5 folds.

