Targeted Machine Learning for Average Causal Effect Estimation Using the Front-Door Functional and its Extensions

Anna Guo

Department of Biostatistics and Bioinformatics **Rollins School of Public Health** Emory University

anna.guo@emory.edu

In collaborations with: David Benkeser (Emory), Razieh Nabi (Emory)

R packages

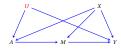
- ▶ fdtmle
- ▶ ADMGtmle



(Front-door Model)

R packages

- ▶ fdtmle
- ▶ ADMGtmle



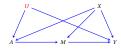
(Front-door Model)

(Extension of Front-door model)

(Extension of Front-door model)

R packages

- ▶ fdtmle
- ▶ ADMGtmle



(Front-door Model)

(Extension of Front-door model)

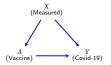
(Extension of Front-door model)

R packages

- ▶ fdtmle
- ▶ ADMGtmle

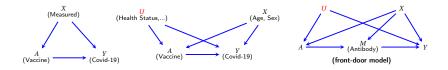
Functionalities

- Identification
- Estimation: doubly robust onestep & TMLE estimators
- Efficiency & Asymptotic Behavior



Objective: evaluate the causal effect of vaccine on Covid-19 incidence.
 Average Causal Effect: E(Y^{a=1}) – E(Y^{a=0}), Target Parameter: ψ := E[Y^a], a₀ ∈ {0,1}

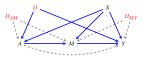
- Objective: evaluate the causal effect of vaccine on Covid-19 incidence.
 Average Causal Effect: E(Y^{a=1}) E(Y^{a=0}), Target Parameter: ψ := E[Y^{a₀}], a₀ ∈ {0,1}
- 2. Challenge: presence of unmeasured confounders U.



- Objective: evaluate the causal effect of vaccine on Covid-19 incidence.
 Average Causal Effect: E(Y^{a=1}) E(Y^{a=0}), Target Parameter: ψ := E[Y^{a0}], a₀ ∈ {0,1}
- 2. Challenge: presence of unmeasured confounders U.
- 3. Solution: presence of mediator(s) $M \implies$ front-door model (Pearl, 1995)

Identification Assumptions:

- 1. No direct effect: $Y^{a,m} = Y^m$, $\forall a, m$;
- 2. Conditional ignorability: $M^a \perp A \mid X \And Y^m \perp M \mid A, X;$
- 3. Consistency: $M^a = M$ when $A = a \& Y^m = Y$ when M = m;
- 4. Positivity: P(A = 1 | X = x) > 0, P(M = m | A = a, X = x) > 0, $\forall x$ with P(X = x) > 0



(Encoded assumptions)

Identification Assumptions:

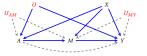
- 1. No direct effect: $Y^{a,m} = Y^m$, $\forall a, m$;
- 2. Conditional ignorability: $M^a \perp A \mid X \And Y^m \perp M \mid A, X;$
- 3. Consistency: $M^a = M$ when $A = a \& Y^m = Y$ when M = m;
- 4. Positivity: P(A = 1 | X = x) > 0, P(M = m | A = a, X = x) > 0, $\forall x$ with P(X = x) > 0

Identification functional:

$$\psi(P) = \iint \sum_{a=0}^{1} \underbrace{\mathbb{E}(Y \mid m, a, x)}_{\mu(m, a, x)} \underbrace{p(a \mid x)}_{\pi(a \mid x)} \underbrace{p(m \mid a_0, x)}_{f_M(m \mid a_0, x)} \underbrace{p(x)}_{p_X(x)} dm dx \quad \text{(target estimand)}.$$

The above functional depends on the following nuisance parameters:

▶ outcome regression: $\mathbb{E}[Y | m, a, x]$, denoted by $\mu(m, a, x)$



(Encoded assumptions)

Identification Assumptions:

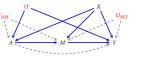
- 1. No direct effect: $Y^{a,m} = Y^m$, $\forall a, m$;
- 2. Conditional ignorability: $M^a \perp A \mid X \And Y^m \perp M \mid A, X;$
- 3. Consistency: $M^a = M$ when $A = a \& Y^m = Y$ when M = m;
- 4. Positivity: P(A = 1 | X = x) > 0, P(M = m | A = a, X = x) > 0, $\forall x$ with P(X = x) > 0

Identification functional:

$$\psi(P) = \iint \sum_{a=0}^{1} \underbrace{\mathbb{E}(Y \mid m, a, x)}_{\mu(m, a, x)} \underbrace{p(a \mid x)}_{\pi(a \mid x)} \underbrace{p(m \mid a_0, x)}_{f_M(m \mid a_0, x)} \underbrace{p(x)}_{p_X(x)} dm dx \quad \text{(target estimand)}.$$

The above functional depends on the following nuisance parameters:

- ▶ outcome regression: $\mathbb{E}[Y | m, a, x]$, denoted by $\mu(m, a, x)$
- ▶ propensity score: p(a | x), denoted by $\pi(a | x)$



(Encoded assumptions)

Identification Assumptions:

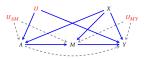
- 1. No direct effect: $Y^{a,m} = Y^m$, $\forall a, m$;
- 2. Conditional ignorability: $M^a \perp A \mid X \And Y^m \perp M \mid A, X;$
- 3. Consistency: $M^a = M$ when $A = a \& Y^m = Y$ when M = m;
- 4. Positivity: P(A = 1 | X = x) > 0, P(M = m | A = a, X = x) > 0, $\forall x$ with P(X = x) > 0

Identification functional:

$$\psi(P) = \iint \sum_{a=0}^{1} \underbrace{\mathbb{E}(Y \mid m, a, x)}_{\mu(m, a, x)} \underbrace{p(a \mid x)}_{\pi(a \mid x)} \underbrace{p(m \mid a_0, x)}_{f_M(m \mid a_0, x)} \underbrace{p(x)}_{p_X(x)} dm dx \quad \text{(target estimand)}.$$

The above functional depends on the following nuisance parameters:

- ▶ outcome regression: $\mathbb{E}[Y | m, a, x]$, denoted by $\mu(m, a, x)$
- ▶ propensity score: p(a | x), denoted by $\pi(a | x)$
- mediator density: $p(m \mid a_0, x)$, denoted by $f_M(m \mid a_0, x)$



(Encoded assumptions)

Identification Assumptions:

- 1. No direct effect: $Y^{a,m} = Y^m$, $\forall a, m$;
- 2. Conditional ignorability: $M^a \perp A \mid X \And Y^m \perp M \mid A, X;$
- 3. Consistency: $M^a = M$ when $A = a \& Y^m = Y$ when M = m;
- 4. Positivity: P(A = 1 | X = x) > 0, P(M = m | A = a, X = x) > 0, $\forall x$ with P(X = x) > 0

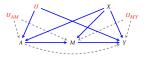
Identification functional:

$$\psi(P) = \iint \sum_{a=0}^{1} \underbrace{\mathbb{E}(Y \mid m, a, x)}_{\mu(m, a, x)} \underbrace{p(a \mid x)}_{\pi(a \mid x)} \underbrace{p(m \mid a_0, x)}_{f_M(m \mid a_0, x)} \underbrace{p(x)}_{p_X(x)} dm dx \quad \text{(target estimand)}.$$

The above functional depends on the following nuisance parameters:

- ▶ outcome regression: $\mathbb{E}[Y | m, a, x]$, denoted by $\mu(m, a, x)$
- ▶ propensity score: p(a | x), denoted by $\pi(a | x)$
- mediator density: $p(m \mid a_0, x)$, denoted by $f_M(m \mid a_0, x)$
- covariates density: p(x), denoted by $p_X(x)$.

Let $Q = {\mu, \pi, f_M, p_X}$, we can write $\psi(P)$ as $\psi(Q)$.



(Encoded assumptions)

Estimation - Plugin Estimator

$$\begin{split} \psi(Q) &= \iint \sum_{a=0}^{1} \mu(m, a, x) \ \pi(a \mid x) \ f_M(m \mid a_0, x) \ p_X(x) \ dm \ dx \quad \text{(ID functional)} \\ \psi(\widehat{Q}) &= \frac{1}{n} \sum_{i=1}^{n} \sum_{m=a=0}^{1} \ \widehat{\mu}(m, a, X_i) \ \widehat{\pi}(a \mid X_i) \ \widehat{f}_M(m \mid a_0, X_i) \quad \text{(plugin estimator)}. \end{split}$$

Estimation - Plugin Estimator

$$\begin{split} \psi(Q) &= \iint \sum_{a=0}^{1} \mu(m, a, x) \ \pi(a \mid x) \ f_M(m \mid a_0, x) \ p_X(x) \ dm \ dx \quad \text{(ID functional)} \\ \psi(\widehat{Q}) &= \frac{1}{n} \sum_{i=1}^{n} \sum_{m=a=0}^{1} \ \widehat{\mu}(m, a, X_i) \ \widehat{\pi}(a \mid X_i) \ \widehat{f}_M(m \mid a_0, X_i) \quad \text{(plugin estimator)}. \end{split}$$

Limitations:

density estimation and numeric integration

Estimation - Plugin Estimator

$$\begin{split} \psi(Q) &= \iint \sum_{a=0}^{1} \ \mu(m,a,x) \ \pi(a \mid x) \ f_M(m \mid a_0,x) \ p_X(x) \ dm \ dx \quad \text{(ID functional)} \\ \psi(\widehat{Q}) &= \frac{1}{n} \sum_{i=1}^{n} \sum_{m=a=0}^{1} \ \widehat{\mu}(m,a,X_i) \ \widehat{\pi}(a \mid X_i) \ \widehat{f}_M(m \mid a_0,X_i) \quad \text{(plugin estimator)}. \end{split}$$

Limitations:

- density estimation and numeric integration
- First-order bias: $\psi(\hat{Q}) = \psi(Q) \underbrace{P\Phi(\hat{Q})}_{\text{first-order bias}} + \underbrace{R_2(\hat{Q}, Q)}_{\text{remainder term}}$ (von Mises Expansion).

where $\Phi(Q)$ is the efficient influence function of $\psi(Q)$, which is unique under nonparametric models, such as the front-door model.

Correction for the first-order bias yields the onestep estimator

$$\psi(\widehat{Q}) = \psi(Q) - P\Phi(\widehat{Q}) + R_2(\widehat{Q}, Q) \implies \psi^+(\widehat{Q}) = \psi(\widehat{Q}) + P_n\Phi(\widehat{Q}).$$

Fulcher et al. (2020) first derived $\Phi(Q)$, and suggested the following estimator:

$$\begin{split} \psi^{+}(\widehat{Q}) &= \frac{1}{n} \sum_{i=1}^{n} \frac{\widehat{f}_{M}\left(M_{i} \mid a_{0}, X_{i}\right)}{\widehat{f}_{M}\left(M_{i} \mid A_{i}, X_{i}\right)} \left\{Y_{i} - \widehat{\mu}\left(M_{i}, A_{i}, X_{i}\right)\right\} \\ &+ \frac{\mathbb{I}\left(A_{i} = a_{0}\right)}{\widehat{\pi}\left(a_{0} \mid X_{i}\right)} \left\{\sum_{a} \widehat{\mu}\left(M_{i}, a, X_{i}\right) \widehat{\pi}\left(a \mid X_{i}\right) - \int \sum_{a} \widehat{\mu}\left(M_{i}, a, X_{i}\right) \widehat{\pi}\left(a \mid X_{i}\right) \widehat{f}_{M}\left(m \mid a_{0}, X_{i}\right) dm\right\} \\ &+ \int \widehat{\mu}\left(m, A_{i}, X_{i}\right) \widehat{f}_{M}\left(m \mid a_{0}, X_{i}\right) dm \end{split}$$

Nuisance estimates: $\widehat{Q} = {\{\widehat{\mu}, \widehat{\pi}, \widehat{f}_M\}}$, while p_X is emiprically evaluated

▶ Double robustness: $\psi^+(\hat{Q})$ is a consistent estimator if either \hat{f}_M or $\{\hat{\mu}, \hat{\pi}\}$ is correctly specified in parametric models.

Limitations

- The proposed onestep estimator requires estimating the mediator density $f_M(M|A, X)$. A daunting task under large collection of mediators of different types.
- Onestep estimator may yield estimates that is outside of the range of the target parameter, especially for binary outcome.
- ▶ The asymptotic behavior of this one-step estimator, along with its second-order remainder term, requires additional investigation.

Limitations

- The proposed onestep estimator requires estimating the mediator density $f_M(M|A, X)$. A daunting task under large collection of mediators of different types.
- Onestep estimator may yield estimates that is outside of the range of the target parameter, especially for binary outcome.
- ► The asymptotic behavior of this one-step estimator, along with its second-order remainder term, requires additional investigation.

Solutions

- Re-parameterize $\psi(Q)$ to avoid direct density estimation
- Adopt Targeted Minimum Loss Based Estimation (TMLE) (Van der Laan et al., 2011)

Nuisances that involving the **conditional density** f_M :

$$\begin{split} \psi^{+}(\widehat{Q}) &= \frac{1}{n} \sum_{i=1}^{n} \frac{\widehat{f}_{M}\left(M_{i} \mid a_{0}, X_{i}\right)}{\widehat{f}_{M}\left(M_{i} \mid A_{i}, X_{i}\right)} \left\{Y_{i} - \widehat{\mu}\left(M_{i}, A_{i}, X_{i}\right)\right\} \\ &+ \frac{\mathbb{I}\left(A_{i} = a_{0}\right)}{\widehat{\pi}\left(a_{0} \mid X_{i}\right)} \left\{\sum_{a} \widehat{\mu}\left(M_{i}, a, X_{i}\right) \widehat{\pi}\left(a \mid X_{i}\right) - \int \sum_{a} \widehat{\mu}\left(M_{i}, a, X_{i}\right) \widehat{\pi}\left(a \mid X_{i}\right) \widehat{f}_{M}\left(m \mid a_{0}, X_{i}\right) dm\right\} \\ &+ \int \widehat{\mu}\left(m, A_{i}, X_{i}\right) \widehat{f}_{M}\left(m \mid a_{0}, X_{i}\right) dm \end{split}$$

Mediator density ratio estimation via Bayes rule

$$f_M^r(m, a, x) = \frac{f_M(m \mid a_0, x)}{f_M(m \mid a, x)} = \frac{\lambda(a_0 \mid x, m)}{\lambda(a \mid x, m)} \times \frac{\pi(a \mid x)}{\pi(a_0 \mid x)},$$

where $\lambda(a \mid x, m) = p(A = a \mid X = x, M = m).$

Nuisances that involving the **conditional density** f_M :

$$\psi^{+}(\hat{Q}) = \frac{1}{n} \sum_{i=1}^{n} \frac{\hat{f}_{M}\left(M_{i} \mid a_{0}, X_{i}\right)}{\hat{f}_{M}\left(M_{i} \mid A_{i}, X_{i}\right)} \left\{Y_{i} - \hat{\mu}\left(M_{i}, A_{i}, X_{i}\right)\right\}$$

+
$$\frac{\mathbb{I}\left(A_{i} = a_{0}\right)}{\hat{\pi}\left(a_{0} \mid X_{i}\right)} \left\{\sum_{a} \hat{\mu}\left(M_{i}, a, X_{i}\right) \hat{\pi}\left(a \mid X_{i}\right) - \underbrace{\int \sum_{a} \hat{\mu}\left(M_{i}, a, X_{i}\right) \hat{\pi}\left(a \mid X_{i}\right)}_{\mathbb{E}\left(\xi\left(M_{i}, X_{i}\right)\mid a_{0}, X_{i}\right)} \hat{f}_{M}\left(m \mid a_{0}, X_{i}\right) dm}\right\}$$

$$+\int \widehat{\mu}(m,A_i,X_i)\widehat{f}_M(m\mid a_0,X_i)\,dm$$

Mediator density ratio estimation via Bayes rule

$$\begin{split} f_M^r(m,a,x) &= \frac{f_M(m \mid a_0,x)}{f_M(m \mid a,x)} = \frac{\lambda(a_0 \mid x,m)}{\lambda(a \mid x,m)} \times \frac{\pi(a \mid x)}{\pi(a_0 \mid x)}, \\ \text{where } \lambda(a \mid x,m) &= p(A = a \mid X = x, M = m). \end{split}$$

▶ Sequential regression for estimating $\gamma(x)$: $\gamma(x) = \mathbb{E}(\xi(m, x) | a_0, x)$

Nuisances that involving the **conditional density** f_M :

$$\begin{split} \psi^{+}(\widehat{Q}) &= \frac{1}{n} \sum_{i=1}^{n} \frac{\widehat{f}_{M}\left(M_{i} \mid a_{0}, X_{i}\right)}{\widehat{f}_{M}\left(M_{i} \mid A_{i}, X_{i}\right)} \left\{Y_{i} - \widehat{\mu}\left(M_{i}, A_{i}, X_{i}\right)\right\} \\ &+ \frac{\mathbb{I}\left(A_{i} = a_{0}\right)}{\widehat{\pi}\left(a_{0} \mid X_{i}\right)} \left\{\sum_{a} \widehat{\mu}\left(M_{i}, a, X_{i}\right) \widehat{\pi}\left(a \mid X_{i}\right) - \int \sum_{a} \widehat{\mu}\left(M_{i}, a, X_{i}\right) \widehat{\pi}\left(a \mid X_{i}\right) \widehat{f}_{M}\left(m \mid a_{0}, X_{i}\right) dm\right\} \\ &+ \underbrace{\int \widehat{\mu}\left(m, A_{i}, X_{i}\right) \widehat{f}_{M}\left(m \mid a_{0}, X_{i}\right) dm}_{\kappa_{a} = \mathbb{E}\left[\mu(M_{i}, a, X_{i})|A = a_{0}, X\right], \text{ for } a \in \{0, 1\}} \end{split}$$

Mediator density ratio estimation via Bayes rule

$$\begin{split} f_M^r(m,a,x) &= \frac{f_M(m \mid a_0,x)}{f_M(m \mid a,x)} = \frac{\lambda \left(a_0 \mid x,m\right)}{\lambda \left(a \mid x,m\right)} \times \frac{\pi \left(a \mid x\right)}{\pi \left(a_0 \mid x\right)}, \\ \text{where } \lambda(a \mid x,m) &= p(A = a \mid X = x, M = m). \end{split}$$

- ▶ Sequential regression for estimating $\gamma(x)$: $\gamma(x) = \mathbb{E}(\xi(m, x) | a_0, x)$
- Sequential regression for estimating $\eta(x)$

$$\eta(a, x) = \int \mu(m, a, x) f_{M|A, X}(m \mid a_0, x) \, dm = A\kappa_1(X) + (1 - A)\kappa_0(X).$$

Reparameterized onestep estimator

$$\begin{split} \psi_{2}^{+}(\widehat{Q}) &= \frac{1}{n} \sum_{i=1}^{n} \left[\widehat{f}_{M}^{r} \left(M_{i}, A_{i}, X_{i} \right) \left\{ Y_{i} - \widehat{\mu} \left(M_{i}, A_{i}, X_{i} \right) \right\} \\ &+ \frac{\mathbb{I} \left(A_{i} = a_{0} \right)}{\widehat{\pi} \left(a_{0} \mid X_{i} \right)} \left\{ \widehat{\xi} \left(M_{i}, X_{i} \right) - \widehat{\gamma} \left(X_{i} \right) \right\} \\ &+ \left\{ \widehat{\kappa}_{1} \left(X_{i} \right) - \widehat{\kappa}_{0} \left(X_{i} \right) \right\} \left\{ A_{i} - \widehat{\pi} \left(1 \mid X_{i} \right) \right\} \\ &+ \widehat{\gamma} \left(X_{i} \right) \right]. \quad (\text{second one-step estimator}) \end{split}$$

new set of nuisance parameters: $Q = \{\mu, \pi, p_X, \underbrace{f_M^r, \gamma, \kappa}_{f_M}\}$ or $\{\mu, \pi, p_X, \underbrace{\lambda, \gamma, \kappa}_{f_M}\}$.

Reparameterized onestep estimator

$$\psi_{2}^{+}(\widehat{Q}) = \frac{1}{n} \sum_{i=1}^{n} \left[\widehat{f}_{M}^{r} \left(M_{i}, A_{i}, X_{i} \right) \left\{ Y_{i} - \widehat{\mu} \left(M_{i}, A_{i}, X_{i} \right) \right\} \\ + \frac{\mathbb{I} \left(A_{i} = a_{0} \right)}{\widehat{\pi} \left(a_{0} \mid X_{i} \right)} \left\{ \widehat{\xi} \left(M_{i}, X_{i} \right) - \widehat{\gamma} \left(X_{i} \right) \right\} \\ + \left\{ \widehat{\kappa}_{1} \left(X_{i} \right) - \widehat{\kappa}_{0} \left(X_{i} \right) \right\} \left\{ A_{i} - \widehat{\pi} \left(1 \mid X_{i} \right) \right\} \\ + \widehat{\gamma} \left(X_{i} \right) \right]. \qquad (\text{second one-step estimator})$$

new set of nuisance parameters: $Q = \{\mu, \pi, p_X, \underbrace{f_M^r, \gamma, \kappa}_{f_M}\}$ or $\{\mu, \pi, p_X, \underbrace{\lambda, \gamma, \kappa}_{f_M}\}$.

▶ The onestep estimator resolves the first-order bias by adding $P_n \Phi(\hat{Q})$ on top of the plugin estimator.

Reparameterized onestep estimator

$$\begin{split} \psi_{2}^{+}(\widehat{Q}) &= \frac{1}{n} \sum_{i=1}^{n} \left[\widehat{f}_{M}^{r} \left(M_{i}, A_{i}, X_{i} \right) \left\{ Y_{i} - \widehat{\mu} \left(M_{i}, A_{i}, X_{i} \right) \right\} \\ &+ \frac{\mathbb{I} \left(A_{i} = a_{0} \right)}{\widehat{\pi} \left(a_{0} \mid X_{i} \right)} \left\{ \widehat{\xi} \left(M_{i}, X_{i} \right) - \widehat{\gamma} \left(X_{i} \right) \right\} \\ &+ \left\{ \widehat{\kappa}_{1} \left(X_{i} \right) - \widehat{\kappa}_{0} \left(X_{i} \right) \right\} \left\{ A_{i} - \widehat{\pi} \left(1 \mid X_{i} \right) \right\} \\ &+ \widehat{\gamma} \left(X_{i} \right) \right]. \end{split}$$
(second one-step estimator)

new set of nuisance parameters: $Q = \{\mu, \pi, p_X, \underbrace{f_M^r, \gamma, \kappa}_{f_M}\}$ or $\{\mu, \pi, p_X, \underbrace{\lambda, \gamma, \kappa}_{f_M}\}$.

- ▶ The onestep estimator resolves the first-order bias by adding $P_n \Phi(\hat{Q})$ on top of the plugin estimator.
- Unaddressed: estimates that fall out of the parameter space.

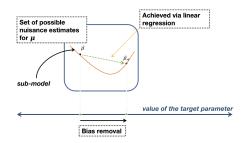
▶ Update $\hat{Q} \Longrightarrow \hat{Q}^*$ s.t $P_n \Phi(\hat{Q}^*) \approx 0$. TMLE estimator is defined as $\psi_2(\hat{Q}^*)$

The TMLE procedure

- 1. Obtain an initial estimate of the nuisances $\hat{Q} = {\hat{\mu}, \hat{\pi}, \cdots}$
- 2. loss functions $L: Q \to R$ parametric submodels \hat{Q}_{ϵ} s.t

(C1)
$$\hat{Q} = \hat{Q}_{\epsilon=0}$$

(C2) $Q = \operatorname{argmin}_{\widetilde{Q} \in \mathcal{M}_Q} \int L(\widetilde{Q}) dQ$
(C3) $\left. \frac{\partial}{\partial \epsilon} L(\widehat{Q}_{\epsilon}) \right|_{\epsilon=0} = \Phi(\widehat{Q})$



Theorem (Asymptotic linearity of $\psi_2(\hat{Q}^*)$)

Assume the nuisance estimates $\hat{Q}^{\star} = (\hat{\mu}^*, \hat{\pi}^*, \hat{\gamma}^*, \hat{\kappa}, \hat{\lambda})$ have the following $L^2(P)$ rates of convergence:

$$\begin{split} ||\hat{\pi}^* - \pi|| &= o_P(n^{-\frac{1}{k}}), \quad ||\hat{\mu}^* - \mu|| = o_P(n^{-\frac{1}{q}}) \\ ||\hat{\gamma}^* - \gamma|| &= o_P(n^{-\frac{1}{j}}), \quad ||\hat{\kappa}_a - \kappa_a|| = o_P(n^{-\frac{1}{\ell}}), \quad ||\hat{\lambda} - \lambda|| = o_P(n^{-\frac{1}{d}}) \end{split}$$

The TMLE $\psi_2(\hat{Q}^*)$ is asymptotically linear if the following condition as well as the Donsker condition are satisfied.

$$\frac{1}{q} + \frac{1}{k} \ge \frac{1}{2}, \quad \frac{1}{d} + \frac{1}{q} \ge \frac{1}{2}, \quad \frac{1}{k} + \frac{1}{j} \ge \frac{1}{2}, \quad \frac{1}{k} + \frac{1}{\ell} \ge \frac{1}{2}.$$

Theorem (Asymptotic linearity of $\psi_2(\hat{Q}^*)$)

Assume the nuisance estimates $\hat{Q}^{\star} = (\hat{\mu}^*, \hat{\pi}^*, \hat{\gamma}^*, \hat{\kappa}, \hat{\lambda})$ have the following $L^2(P)$ rates of convergence:

$$\begin{split} ||\hat{\pi}^* - \pi|| &= o_P(n^{-\frac{1}{k}}), \quad ||\hat{\mu}^* - \mu|| = o_P(n^{-\frac{1}{q}}) \\ ||\hat{\gamma}^* - \gamma|| &= o_P(n^{-\frac{1}{j}}), \quad ||\hat{\kappa}_a - \kappa_a|| = o_P(n^{-\frac{1}{\ell}}), \quad ||\hat{\lambda} - \lambda|| = o_P(n^{-\frac{1}{d}}). \end{split}$$

The TMLE $\psi_2(\hat{Q}^*)$ is asymptotically linear if the following condition as well as the Donsker condition are satisfied.

$$\frac{1}{q} + \frac{1}{k} \ge \frac{1}{2}, \quad \frac{1}{d} + \frac{1}{q} \ge \frac{1}{2}, \quad \frac{1}{k} + \frac{1}{j} \ge \frac{1}{2}, \quad \frac{1}{k} + \frac{1}{\ell} \ge \frac{1}{2}.$$

Embrace a larger set of machine learning & statistical models

Theorem (Asymptotic linearity of $\psi_2(\hat{Q}^*)$)

Assume the nuisance estimates $\hat{Q}^{\star} = (\hat{\mu}^*, \hat{\pi}^*, \hat{\gamma}^*, \hat{\kappa}, \hat{\lambda})$ have the following $L^2(P)$ rates of convergence:

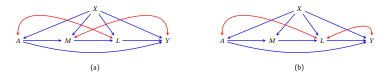
$$\begin{split} ||\hat{\pi}^* - \pi|| &= o_P(n^{-\frac{1}{k}}), \quad ||\hat{\mu}^* - \mu|| = o_P(n^{-\frac{1}{q}}) \\ ||\hat{\gamma}^* - \gamma|| &= o_P(n^{-\frac{1}{j}}), \quad ||\hat{\kappa}_a - \kappa_a|| = o_P(n^{-\frac{1}{\ell}}), \quad ||\hat{\lambda} - \lambda|| = o_P(n^{-\frac{1}{d}}). \end{split}$$

The TMLE $\psi_2(\hat{Q}^*)$ is asymptotically linear if the following condition as well as the Donsker condition are satisfied.

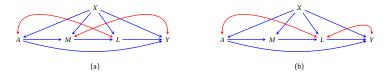
$$\frac{1}{q} + \frac{1}{k} \ge \frac{1}{2}, \quad \frac{1}{d} + \frac{1}{q} \ge \frac{1}{2}, \quad \frac{1}{k} + \frac{1}{j} \ge \frac{1}{2}, \quad \frac{1}{k} + \frac{1}{\ell} \ge \frac{1}{2}.$$

- Embrace a larger set of machine learning & statistical models
- Cross-fitting as an alternative of Donsker condition.

Generalize front-door model to settings with multiple mediators that have different confounding behavior



Generalize front-door model to settings with multiple mediators that have different confounding behavior

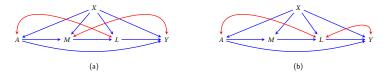


• primal fixability of A: no bidrected \leftrightarrow path from A to its children.

Generalize front-door model to settings with multiple mediators that have different confounding behavior

- ▶ primal fixability of A: no bidrected \leftrightarrow path from A to its children.
- ▶ primal fixability of $A \iff$ identifiability of the causal effect of A on $V \setminus A$ (Tian and Pearl, 2002)

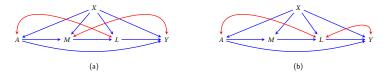
Generalize front-door model to settings with multiple mediators that have different confounding behavior



- ▶ primal fixability of A: no bidrected \leftrightarrow path from A to its children.
- ▶ primal fixability of $A \iff$ identifiability of the causal effect of A on $V \setminus A$ (Tian and Pearl, 2002)
- identification of $\mathbb{E}(Y^{a_0})$

$$\psi(t) = \sum_{V \setminus A} Y \times \prod_{M_i \in \mathbb{M}} p\left(M_i \mid \operatorname{mp}_{\mathscr{G}}(M_i)\right) \Big|_{A=a_0} \times \sum_{A} \prod_{L_i \in \mathbb{L}} p\left(L_i \mid \operatorname{mp}_{\mathscr{G}}(L_i)\right) \times p(\mathbb{C}),$$

Generalize front-door model to settings with multiple mediators that have different confounding behavior



- ▶ primal fixability of A: no bidrected \leftrightarrow path from A to its children.
- ▶ primal fixability of $A \iff$ identifiability of the causal effect of A on $V \setminus A$ (Tian and Pearl, 2002)
- identification of $\mathbb{E}(Y^{a_0})$

$$\psi(t) = \sum_{V \setminus A} Y \times \prod_{M_i \in \mathbb{M}} p\left(M_i \mid \operatorname{mp}_{\mathscr{G}}\left(M_i\right)\right) \Big|_{A=a_0} \times \sum_{A} \prod_{L_i \in \mathbb{L}} p\left(L_i \mid \operatorname{mp}_{\mathscr{G}}\left(L_i\right)\right) \times p(\mathbb{C}),$$

▶ front-door model as an example: $\mathbb{C} = \{X\}$, $\mathbb{L} = \{A, Y\}$, $\mathbb{M} = \{M\}$

$$\psi(t) = \sum_{X,M,Y} Y \times p(M \mid a_0, X) \times \sum_A p(Y \mid M, A, X) p(A \mid X) p(X)$$

▶ the EIF of $\mathbb{E}(Y^{a_0})$, which is unique under nonparametrically saturated model (Bhattacharya et al., 2022)

$$\begin{split} U_{\Psi_{I}} &= \sum_{M_{i} \in \mathbb{M}} \Big\{ \frac{\mathbb{I}(A = a_{0})}{\prod_{L_{i} < M_{i}} p(L_{i} \mid \operatorname{mp}_{\mathscr{G}}(L_{i}))} \times \Big(\sum_{A \cup \{ > M_{i} \}} Y \times \prod_{\substack{V_{i} \in \mathbb{L} \\ \{ > M_{i} \}}} p(V_{i} \mid \operatorname{mp}_{\mathscr{G}}(V_{i}))\Big|_{A = a_{0}} \text{ if } V_{i} \in \mathbb{M} \Big) \Big\} \\ &\quad - \sum_{A \cup \{ \geq M_{i} \}} Y \times \prod_{\substack{V_{i} \in \mathbb{L} \\ \{ \geq M_{i} \}}} p(V_{i} \mid \operatorname{mp}_{\mathscr{G}}(V_{i}))\Big|_{A = a_{0}} \text{ if } V_{i} \in \mathbb{M} \Big) \Big\} \\ &\quad + \sum_{L_{i} \in \mathbb{L} \setminus A} \Big\{ \frac{\prod_{M_{i} < L_{i}} p(M_{i} \mid \operatorname{mp}_{\mathscr{G}}(M_{i}))\Big|_{A = a_{0}}}{\prod_{M_{i} < L_{i}} p(M_{i} \mid \operatorname{mp}_{\mathscr{G}}(M_{i}))} \times (\sum_{\{ > L_{i} \}} Y \times \prod_{V_{i} > L_{i}} p(V_{i} \mid \operatorname{mp}_{\mathscr{G}}(V_{i}))\Big|_{A = a_{0}} \text{ if } V_{i} \in \mathbb{M} \Big\} \\ &\quad - \sum_{\{ \geq L_{i} \}} Y \times \prod_{V_{i} \geq L_{i}} p(V_{i} \mid \operatorname{mp}_{\mathscr{G}}(V_{i}))\Big|_{A = a_{0}} \text{ if } V_{i} \in \mathbb{M} \Big) \Big\} \\ &\quad + \sum_{V \setminus \{A, \mathbb{C}\}} Y \times \prod_{M_{i} \in \mathbb{M}} p\left(M_{i} \mid \operatorname{mp}_{\mathscr{G}}(M_{i})\right)\Big|_{A = a_{0}} \times \prod_{L_{i} \in \mathbb{L} \setminus A} p\left(L_{i} \mid \operatorname{mp}_{\mathscr{G}}(L_{i})\right) - \psi(t), \end{split}$$

Extension of the Front-door Model - Estimation

▶ plugin estimator:
$$\tau : A \to Z_1 \to \cdots \to Z_k \to Y$$

$$\psi(t) = E\left(\mathbb{I}(A = a_0)Y\right) + \mathbb{E}\left\{\mathbb{E}\left[\cdots \mathbb{E}\left[\mu \mid \operatorname{mp}_{\mathscr{G}}^{-A}(Z_k), a_{Z_k}\right] \cdots \mid \operatorname{mp}_{\mathscr{G}}^{-A}(Z_1), a_{Z_1}\right]\right\},$$

where $a_{Z_k} = a_0$ if $Z_k \in \mathbb{M}$ and $= 1 - a_0$ if $Z_k \in \mathbb{L}$.

onestep estimator

$$Q = \{\mu, \pi, B_1, \cdots, B_k, f_{Z_1}^r, \cdots, f_{Z_k}^r\}, \quad f_{Z_k}^r = \frac{p(Z_k \mid mp_{\mathcal{G}}^{-A}(Z_k), a_{Z_k})}{p(Z_k \mid mp_{\mathcal{G}}^{-A}(Z_k), 1 - a_{Z_k})}$$

TMLE estimator

order of updating nuisances: $\pi^{(t)}$, $\mu^{(t)}$, $B_k^{(t)}$, \cdots , $B_1^{(t)}$, \cdots

We conducted extensive simulation studies, under various types of mediators (binary, continuous, multivariate):

- ► Confirming theoretical properties of our proposed estimators.
- Comparing TMLE vs. one-step in settings with weak overlap (near positivity violations).
- Performances under misspecified parametric models vs. flexible estimation (using a super learner).
- ▶ Impact of cross-fitting on proposed estimators (using random forests).

- fdtmle package in R
 - Conducting causal inference using the front-door criterion
 - https://github.com/annaguo-bios/fdtmle
- ADMGtmle package in R
 - $\circ\,$ Conducting causal inference in graphical models with unmeasured variables via the extension of the front-door criterion
 - https://github.com/annaguo-bios/ADMGtmle

Future work

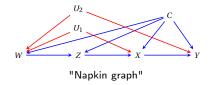
Assumption violation and sensitivity analysis

Future work

- Assumption violation and sensitivity analysis
- Extension to **semiparametric** graphical models that encodes regular independence constrain and/or interventional constrain (Verma constrain)

Future work

- Assumption violation and sensitivity analysis
- Extension to **semiparametric** graphical models that encodes regular independence constrain and/or interventional constrain (Verma constrain)
- ▶ Extension to graphical models that can **not be** identified via either backdoor criterion or front-door criterion



Targeted Machine Learning for Average Causal Effect Estimation Using the Front-Door Functional

Anna Guo,¹ David Benkeser¹ and Razieh Nabi^{1,*}

 $^1\text{Department}$ of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA

*Corresponding author. razieh.nabi@emory.edu

(arXiv:2312.10234)

Q&A

Anna Guo, Ph.D. candidate (she/her/hers) Department of Biostatistics and Bioinformatics Emory University

- ♥ @AnnaGuo617
- ➡ anna.guo@emory.edu
- ☆ https://guoanna.com

- Bhattacharya, R., Nabi, R., and Shpitser, I. (2022). Semiparametric inference for causal effects in graphical models with hidden variables. *Journal of Machine Learning Research*, 23(295):1–76.
- Fulcher, I. R., Shpitser, I., Marealle, S., and Tchetgen Tchetgen, E. J. (2020). Robust inference on population indirect causal effects: the generalized front door criterion. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 82(1):199–214.
- Pearl, J. (1995). Causal diagrams for empirical research. *Biometrika*, 82(4):669-688.
- Tian, J. and Pearl, J. (2002). A general identification condition for causal effects. In *Aaai/iaai*, pages 567–573.
- Van der Laan, M. J., Rose, S., et al. (2011). *Targeted learning: causal inference for observational and experimental data*, volume 4. Springer.

For a TMLE $\psi_2(\hat{Q}^*)$ of $\psi(Q)$,

 $\psi(\hat{Q}^*) - \psi(Q) = P_n \Phi(Q) - P_n \Phi(\hat{Q}^*) + (P_n - P) \left\{ \Phi(\hat{Q}^*) - \Phi(Q) \right\} + R_2(\hat{Q}^*, Q) \ .$

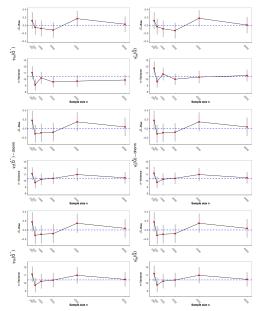
In order to establish asymptotic linearity of the TMLE, we will require

- (A1) Donsker estimates: $\Phi(\hat{Q}^*) \Phi(Q)$ falls in a P-Donsker class with probability tending to 1 ;
- (A2) $L^2(P)$ -consistent influence function estimates: $P\{\Phi(\hat{Q}^*) \Phi(Q)\}^2 = o_P(1)$;
- (A3) Successful targeting of nuisance parameters: $P_n \Phi(\hat{Q}^*) = o_P(n^{-1/2})$.

(A4) Bounded nuisance estimates: for all a, m, x, $\hat{\pi}^*(a \mid x) > \delta_1$ for some $\delta_1 > 0$ and $\hat{\lambda}(a \mid m, x) > \delta_2$ for some $\delta_2 > 0$.

Appendix - Simulation1

Front-door model with bivariate mediator M



16/16

Appendix - Simulation2

	Univaria	te Binary		τ	Jnivariate	Continuo	ous	Bivariate Continuous				
	$\psi_1(\hat{Q}^{\star})$	$\psi_1^+(\hat{Q})$	$\psi_1(\hat{Q}^\star)$	$\psi_1^+(\hat{Q})$	$\psi_{2a}(\hat{Q}^{\star})$	$\psi^+_{2a}(\hat{Q})$	$\psi_{2b}(\hat{Q}^{\star})$	$\psi_{2b}^{+}(\hat{Q})$	$\psi_{2a}(\hat{Q}^{\star})$	$\psi_{2a}^+(\hat{Q})$	$\psi_{2b}(\hat{Q}^{\star})$	$\psi^+_{2b}(\hat{Q})$
n=500												
Bias	-0.004	-0.010	-0.022	-0.004	-0.002	0.000	-0.002	-0.012	-0.012	0.153	-0.031	-0.065
SD	0.078	0.418	0.135	0.799	0.432	2.524	0.405	1.191	0.610	5.096	0.495	1.447
MSE	0.006	0.174	0.019	0.638	0.187	6.363	0.164	1.418	0.372	25.965	0.245	2.097
CI coverage	91.2%	95.4%	96.6%	95.2%	98.4%	97.1%	98.3%	97.3%	99.4%	98.2%	98.5%	97.7%
CI width	0.317	0.854	1.533	1.531	4.764	5.705	2.720	3.447	10.115	12.100	2.854	3.834
n=1000												
Bias	0.000	-0.002	-0.012	-0.018	-0.004	0.041	-0.003	0.020	-0.015	-0.078	-0.003	-0.001
SD	0.056	0.207	0.101	0.470	0.342	1.394	0.338	0.787	0.389	1.841	0.333	0.716
MSE	0.003	0.043	0.010	0.221	0.117	1.942	0.114	0.619	0.152	3.391	0.111	0.513
CI coverage	92.1%	95.4%	96%	94.3%	98.5%	96.3%	98%	97.1%	99.4%	97.1%	99%	96.4%
CI width	0.240	0.492	0.931	0.930	3.071	3.460	1.861	2.178	4.809	5.365	1.852	2.136
n=2000												
Bias	0.000	-0.002	-0.005	0.010	0.009	0.010	0.009	0.014	0.003	-0.006	0.008	0.022
SD	0.039	0.114	0.068	0.239	0.238	0.699	0.243	0.481	0.319	0.980	0.276	0.489
MSE	0.001	0.013	0.005	0.057	0.057	0.488	0.059	0.231	0.102	0.959	0.076	0.240
CI coverage	94.1%	96.2%	97.4%	96%	99.2%	96.9%	98.7%	96%	99.2%	96.9%	98.6%	97.4%
CI width	0.175	0.318	0.602	0.602	1.960	2.092	1.321	1.454	2.989	3.209	1.351	1.504

Table 1. Comparative analysis of TMLEs and one-step estimators under violation of the positivity assumption.

	TMLEs									One-step estimators								
	Univariate Binary			Univariate Continuous					Univariate Binary Univariate					Continuous				
	$\psi_1(\hat{Q}^*)$		$\psi_{2a}(\hat{Q}^{\star})$			$\psi_{2b}(\hat{Q}^{\star})$		$\psi_{1}^{+}(\hat{Q})$			$\psi_{2a}^{+}(\hat{Q})$			$\psi_{2b}^{+}(\hat{Q})$				
	Linear	SL	\mathbf{CF}	Linear	SL	\mathbf{CF}	Linear	SL	\mathbf{CF}	Linear	SL	\mathbf{CF}	Linear	SL	\mathbf{CF}	Linear	$_{\rm SL}$	\mathbf{CF}
n=500																		
Bias	-0.016	-0.001	-0.010	-0.081	-0.020	-0.037	-0.081	-0.016	-0.038	-0.017	-0.008	-0.005	-0.081	-0.021	-0.039	-0.081	-0.016	-0.037
SD	0.043	0.050	0.071	0.099	0.123	0.128	0.099	0.116	0.123	0.043	0.048	0.183	0.099	0.128	0.133	0.099	0.115	0.126
MSE	0.002	0.003	0.005	0.016	0.016	0.018	0.016	0.014	0.016	0.002	0.002	0.033	0.016	0.017	0.019	0.016	0.014	0.017
CI coverage	84.2%	83.2%	82.8%	85.5%	97%	96.8%	85.5%	91.5%	91.8%	83.1%	80%	81.5%	85.5%	96.8%	96.5%	85.5%	91.4%	91.4%
CI width	0.161	0.154	0.172	0.398	0.567	0.596	0.399	0.398	0.444	0.158	0.143	0.176	0.399	0.560	0.589	0.399	0.397	0.444
n=1000																		
Bias	-0.018	-0.003	-0.008	-0.081	-0.012	-0.027	-0.081	-0.009	-0.023	-0.018	-0.006	-0.008	-0.081	-0.013	-0.029	-0.081	-0.009	-0.023
SD	0.030	0.035	0.035	0.074	0.088	0.089	0.074	0.088	0.089	0.030	0.034	0.035	0.074	0.092	0.092	0.074	0.087	0.089
MSE	0.001	0.001	0.001	0.012	0.008	0.009	0.012	0.008	0.008	0.001	0.001	0.001	0.012	0.009	0.009	0.012	0.008	0.008
CI coverage	81.5%	87.3%	85.3%	74.6%	98.2%	97.2%	74.6%	90.1%	89.9%	80.8%	83.6%	84.2%	74.6%	96.8%	96.6%	74.6%	90.3%	89.8%
CI width	0.111	0.113	0.117	0.282	0.403	0.416	0.282	0.293	0.311	0.109	0.106	0.110	0.282	0.400	0.412	0.282	0.292	0.310
n=2000																		
Bias	-0.018	-0.002	-0.005	-0.084	-0.008	-0.019	-0.084	-0.005	-0.016	-0.018	-0.004	-0.005	-0.084	-0.008	-0.018	-0.084	-0.005	-0.016
SD	0.020	0.023	0.024	0.050	0.060	0.059	0.050	0.060	0.059	0.020	0.023	0.023	0.050	0.062	0.061	0.050	0.060	0.059
MSE	0.001	0.001	0.001	0.010	0.004	0.004	0.010	0.004	0.004	0.001	0.001	0.001	0.010	0.004	0.004	0.010	0.004	0.004
CI coverage	76.9%	89.7%	88.4%	60.5%	97.9%	98%	60.4%	92.2%	92.5%	75.4%	87.2%	87.4%	60.5%	97.3%	97.6%	60.4%	92.1%	92.3%
CI width	0.077	0.083	0.084	0.198	0.288	0.293	0.198	0.214	0.222	0.076	0.079	0.081	0.198	0.286	0.291	0.198	0.213	0.221

Table 2. Comparative analysis of TMLEs and one-step estimators under model misspecifications.

Appendix - Simulation4

Table 3. Comparative analysis for the impact of cross-fitting on TMLEs and one-step estimators in conjunction with the use of random forests. RF refers to random forest with 500 trees and a minimum node size of 5 for a continuous variable and 1 for binary, and CF denotes random forest with cross fitting using 5 folds.

			TML	Es		One-step estimators							
	Univari	ate Binary	$Univariate \ Continuous$				Univari	ate Binary	Univariate Continuous				
	$\psi_1(\hat{Q}^\star)$		$\psi_{2a}(\hat{Q}^{\star})$		$\psi_{2b}(\hat{Q}^{\star})$		ψ	$\hat{Q}_{1}^{+}(\hat{Q})$	$\psi^+_{2a}(\hat{Q})$		$\psi^+_{2b}(\hat{Q})$		
	RF	CF	RF	\mathbf{CF}	RF	\mathbf{CF}	RF	\mathbf{CF}	RF	\mathbf{CF}	RF	CF	
n=500													
Bias	-0.162	-0.020	-0.312	0.055	-0.486	0.017	-0.103	-0.028	0.009	0.066	-0.492	0.014	
$^{\rm SD}$	0.166	0.140	0.372	0.331	0.369	0.285	0.051	0.128	0.432	0.318	0.373	0.286	
MSE	0.054	0.020	0.235	0.113	0.373	0.081	0.013	0.017	0.186	0.105	0.381	0.082	
CI coverage	17.4%	82.8%	48.8%	86.9%	36.1%	87.3%	18.8%	86.3%	56.7%	87.6%	35.5%	87%	
CI width	0.128	0.389	0.681	0.980	0.717	0.862	0.119	0.388	0.682	0.977	0.718	0.861	
n=1000													
Bias	-0.162	-0.016	-0.329	0.054	-0.490	0.008	-0.100	-0.021	-0.017	0.059	-0.497	0.005	
$^{\rm SD}$	0.114	0.096	0.252	0.212	0.267	0.221	0.040	0.091	0.286	0.215	0.271	0.221	
MSE	0.039	0.009	0.172	0.048	0.312	0.049	0.012	0.009	0.082	0.049	0.320	0.049	
CI coverage	13.3%	88.5%	30.1%	88.6%	19.5%	86.6%	12.4%	89.7%	52.4%	88.3%	18.3%	87.1%	
CI width	0.101	0.315	0.417	0.690	0.520	0.656	0.098	0.315	0.420	0.689	0.520	0.655	
n=2000													
Bias	-0.161	-0.010	-0.326	0.063	-0.473	0.019	-0.096	-0.013	-0.041	0.065	-0.479	0.016	
\mathbf{SD}	0.083	0.074	0.176	0.148	0.186	0.164	0.034	0.072	0.197	0.150	0.189	0.164	
MSE	0.033	0.006	0.137	0.026	0.259	0.027	0.010	0.005	0.041	0.027	0.265	0.027	
CI coverage	7.8%	90.4%	14.4%	89.8%	6.4%	86.5%	8.9%	90.7%	56.6%	88.9%	6.3%	86.5%	
CI width	0.081	0.246	0.292	0.520	0.376	0.499	0.080	0.246	0.294	0.519	0.376	0.499	